Câu hỏi:

11/12/2024 4,924

Cho hình chữ nhật \(ABCD\) có hai đỉnh di động trên đồ thị hàm số \(y = 9 - {x^2}\) trên khoảng \(\left( { - 3;3} \right)\), hai đỉnh còn lại nằm trên trục hoành (tham khảo hình vẽ). Tìm diện tích lớn nhất của hình chữ nhật \(ABCD\) (kết quả làm tròn đến hàng phần mười).

Cho hình chữ nhật \(ABCD\) có hai đỉnh di động trên đồ thị hàm số \(y = 9 - {x^2}\) trên khoảng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kí hiệu \(x\) là hoành độ của điểm \(B\) \(\left( {0 < x < 3} \right)\).

Ta có \(AB = 2x,BC = 9 - {x^2}\).

Từ đó, diện tích hình chữ nhật \(ABCD\)\(S\left( x \right) = 18x - 2{x^3},0 < x < 3\).

Ta có \(S'\left( x \right) = 18 - 6{x^2}\), \(S'\left( x \right) = 0 \Leftrightarrow {x^2} = 3 \Leftrightarrow x = \sqrt 3 \) (do \(x > 0\)).

Bảng biến thiên

Cho hình chữ nhật \(ABCD\) có hai đỉnh di động trên đồ thị hàm số \(y = 9 - {x^2}\) trên khoảng (ảnh 2)

Từ đó \(\mathop {\max }\limits_{\left( {0;3} \right)} S\left( x \right) = S\left( {\sqrt 3 } \right) = 12\sqrt 3 \approx 20,8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Trong không gian với hệ trục tọa độ \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)có điểm (ảnh 1)

Theo giả thiết có \(\overrightarrow {AB} = 2\,\overrightarrow i \,;\,\,\overrightarrow {AD} = 4\,\overrightarrow j \,;\,\overrightarrow {AA'} = 3\,\overrightarrow k \,;\,\)

Áp dụng quy tắc hình hộp ta có: \(\overrightarrow {AC'} \, = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = 2\,\overrightarrow i \, + 4\overrightarrow j \, + 3\overrightarrow k \).

Do đó điểm \(C'\) có tọa độ là \(\left( {2;4;3} \right)\). Vậy \(a + b - c = 2 + 4 - 3 = 3\).

Lời giải

Số cá bác đã thả trong vụ vừa qua là 20.50 = 1000 con.

Gọi \(x\) là số cá giảm đi, khi đó năng suất \(a\) tăng \(a = \frac{{0,5.x}}{8} = 0,0625x\) (kg/con).

Vậy sản lượng thu được trong năm tới của bác Tôm sẽ là

\(f\left( x \right) = \left( {1000 - x} \right)\left( {1,5 + 0,0625x} \right)\) (kg).

Xét hàm số \(f\left( x \right) = \left( {1000 - x} \right)\left( {1,5 + 0,0625x} \right) = - 0,0625{x^2} + 61x + 1500\).

\(f'\left( x \right) = - 0,125x + 61\); \(f'\left( x \right) = 0 \Leftrightarrow x = 488\).

Bảng biến thiên

Bác Tôm có một cái ao có diện tích 50 m2 để nuôi cá. Vụ vừa qua bác nuôi với mật độ 20 con/m2 (ảnh 1)

Vậy số cá giống cần mua là \(1000 - 488 = 512\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP