Câu hỏi:
11/12/2024 2,617
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình sau. Phương trình \[f\left( {f\left( x \right)} \right) = 0\] có bao nhiêu nghiệm thực phân biệt?
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình sau. Phương trình \[f\left( {f\left( x \right)} \right) = 0\] có bao nhiêu nghiệm thực phân biệt?

Quảng cáo
Trả lời:
Dựa vào đồ thị ta có \[f\left( {f\left( x \right)} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = a\,\,\,\,\left( { - 1 < a < 0} \right)\\f\left( x \right) = 1\\f\left( x \right) = b\,\,\,\,\left( {2 < b < 3} \right)\end{array} \right.\] .
Phương trình \[f\left( x \right) = a\] với \[ - 1 < a < 0\] có ba nghiệm thực phân biệt.
Phương trình \[f\left( x \right) = 1\] có ba nghiệm thực phân biệt.
Phương trình \[f\left( x \right) = b\] với \[2 < b < 3\] có một nghiệm .
Vậy phương trình \[f\left( {f\left( x \right)} \right) = 0\] có \(7\) nghiệm thực phân biệt.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C

Theo giả thiết có \(\overrightarrow {AB} = 2\,\overrightarrow i \,;\,\,\overrightarrow {AD} = 4\,\overrightarrow j \,;\,\overrightarrow {AA'} = 3\,\overrightarrow k \,;\,\)
Áp dụng quy tắc hình hộp ta có: \(\overrightarrow {AC'} \, = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = 2\,\overrightarrow i \, + 4\overrightarrow j \, + 3\overrightarrow k \).
Do đó điểm \(C'\) có tọa độ là \(\left( {2;4;3} \right)\). Vậy \(a + b - c = 2 + 4 - 3 = 3\).
Lời giải
Số cá bác đã thả trong vụ vừa qua là 20.50 = 1000 con.
Gọi \(x\) là số cá giảm đi, khi đó năng suất \(a\) tăng \(a = \frac{{0,5.x}}{8} = 0,0625x\) (kg/con).
Vậy sản lượng thu được trong năm tới của bác Tôm sẽ là
\(f\left( x \right) = \left( {1000 - x} \right)\left( {1,5 + 0,0625x} \right)\) (kg).
Xét hàm số \(f\left( x \right) = \left( {1000 - x} \right)\left( {1,5 + 0,0625x} \right) = - 0,0625{x^2} + 61x + 1500\).
Có \(f'\left( x \right) = - 0,125x + 61\); \(f'\left( x \right) = 0 \Leftrightarrow x = 488\).
Bảng biến thiên

Vậy số cá giống cần mua là \(1000 - 488 = 512\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.