Câu hỏi:

12/12/2024 281

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số \(y = f( x ) có bảng biến thiên như sau:  Đồ thị hàm số \(y = f( x ) có điểm cực tiểu là (ảnh 1)

Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Dựa vào bảng biến thiên, ta có đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {3\,;\, - 4} \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trên hệ trục tọa độ \(Oxy\), cho đồ thị hàm số \(\left( C \right):y = \frac{{{x^2} + x + 1}}{{x + 1}}\) với \(x > - 1\) mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm \(I\left( { - 1; - 1} \right)\), biết hoành độ điểm \(M\) thuộc đồ thị \(\left( C \right)\) mà tại đó thuyền thu được sóng tốt nhất là \({x_0} = \frac{1}{{\sqrt[n]{a}}} - b\) (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức \(P = a \cdot n + b\).

Xem đáp án » 12/12/2024 8,568

Câu 2:

Cho hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) (với tham số \(m\)). Xét tính đúng sai của các khẳng định sau:

a) Khi \(m = 1\) hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\)\(\left( {1; + \infty } \right)\).

b) Khi \(m = 1\) thì trên đoạn \(\left[ {1;4} \right]\) hàm số đạt giá trị lớn nhất bằng \(\frac{1}{2}\).

c) \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

d) Có 1 giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn \(\left[ {0;4} \right]\) bằng \( - 1\).

Xem đáp án » 12/12/2024 7,268

Câu 3:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình vẽ dưới đây. Xét tính đúng sai của các khẳng định sau:

Cho hàm số \(y = f x ) xác định và liên tục trên \({R}\) có bảng biến thiên như hình (ảnh 1)

a) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\)\(\left( {2; + \infty } \right)\).

b) Hàm số \(g\left( x \right) = 2x - 3f\left( x \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).

c) \(f\left( {{{\sin }^2}x} \right) < f\left( {\frac{3}{2}} \right)\).

d) Hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).

Xem đáp án » 12/12/2024 3,655

Câu 4:

Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 10 m, chiều rộng là 6m và chiều cao là 4 m. Một chiếc quạt được treo trên trần nhà sao cho là điểm chính giữa của phòng học.

Xét hệ trục tọa độ \(Oxyz\)có gốc (\(O \equiv A\))  trùng với một góc phòng và mặt phẳng (\(Oxy\)) trùng với mặt sàn, đơn vị đo được lấy theo mét .  Gọi  \[I(a;b;c)\]là tọa độ của điểm treo quạt. Tính giá trị \(a + b + c\)?

Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 10 m, chiều rộng là 6m và (ảnh 1)

Xem đáp án » 12/12/2024 2,687

Câu 5:

Cho hàm số \(y = \frac{{{x^2} - 2x + 5}}{{x - 1}}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 12/12/2024 2,278

Câu 6:

Trong không gian \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\). Biết \(A\left( {1;0;1} \right)\), \(C'\left( {4;5; - 5} \right)\). Tìm tọa độ tâm \(I\) của hình hộp.

Xem đáp án » 12/12/2024 1,675

Câu 7:

Cho tứ diện \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SB\) vuông góc với đáy và \(SB = \sqrt 3 a\). Góc giữa hai vectơ \(\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\)

Cho tứ diện \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SB\) vuông góc với đáy và \(SB = \sqrt 3 a\).  (ảnh 1)

Xem đáp án » 12/12/2024 1,217
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay