Câu hỏi:

12/12/2024 493

Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?

Đường cong trong hình bên là đồ thị của hàm số nào dưới đây? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D                  

+) Hàm số \(y = \frac{{x - 1}}{x}\) không xác định tại \(x = 0\). Loại A

+) Hàm số \(y = {x^3} + 3{x^2} - 4\) có hệ số \[a = 1 > 0\]. Loại B

+) Ta có \(y = - {x^3} + 3x - 4 \Rightarrow y' = - 3{x^2} + 3\)

\(y' = 0 \Leftrightarrow - 3{x^2} + 3 = 0 \Leftrightarrow x = \pm 1\). Hàm số có hai điểm cực trị \(x = \pm 1\). Loại C

+) Ta có \(y = - {x^3} + 3{x^2} - 4 \Rightarrow y' = - 3{x^2} + 6x\)

\(y' = 0 \Leftrightarrow - 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\). Hàm số có hai điểm cực trị \(x = 0,\,x = 2\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(M \in \left( C \right)\) \( \Rightarrow M\left( {{x_0};{x_0} + \frac{1}{{{x_0} + 1}}} \right)\) với \({x_0} > - 1\).

Ta có \(I{M^2} = {\left( {{x_0} + 1} \right)^2} + {\left( {{x_0} + 1 + \frac{1}{{{x_0} + 1}}} \right)^2} = 2{\left( {{x_0} + 1} \right)^2} + \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}} + 2\).

Đặt \(t = {\left( {{x_0} + 1} \right)^2},t > 0\) thì khi đó \(I{M^2} = 2t + 2 + \frac{1}{t}\).

Xét hàm số \(y = 2t + 2 + \frac{1}{t}\)\(y' = 2 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{{\sqrt 2 }}\).

Bảng biến thiên

Trên hệ trục tọa độ \(Oxy\), cho đồ thị hàm số \(\left( C \right):y = \frac{{{x^2} + x + 1}}{{x + 1}}\) với \(x >  - 1\) (ảnh 1)

Để thuyền thu được sóng tốt nhất \( \Leftrightarrow IM\) ngắn nhất \( \Leftrightarrow {x_0} = \frac{1}{{\sqrt[4]{2}}} - 1\).

Vậy \(n = 4;a = 2;b = 1 \Rightarrow a \cdot n + b = 9\).

Lời giải

a) Đ, b) S, c) Đ, d) Đ

a) Tập xác định \(D = \mathbb{R}\backslash \left\{ m \right\}\).

Ta có \(y' = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} \right)}^2}}} > 0,\forall x \ne m\).

Do đó hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;m} \right)\)\(\left( {m; + \infty } \right)\).

Vậy khi \(m = 1\) hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\)\(\left( {1; + \infty } \right)\).

b) Bảng biến thiên

Cho hàm số \(y = {x - {m^2} - 2{x - m}}\) (với tham số \(m\)). Xét tính đúng sai của các khẳng định sau: (ảnh 1)

Với \(m = 1\)  thì giá trị lớn nhất của hàm số  \(f\left( 4 \right) = \frac{1}{3}\).

c) Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - {m^2} - 2}}{{x - m}} = 1\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - {m^2} - 2}}{{x - m}} = 1\).

Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

d) Để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn \(\left[ {0;4} \right]\) bằng \( - 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\frac{{2 - {m^2}}}{{4 - m}} = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\{m^2} + m - 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m = 2,m = - 3\end{array} \right.\)\( \Leftrightarrow m = - 3\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP