Câu hỏi:

19/08/2025 1,353 Lưu

Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\;{\rm{km}}\). Vận tốc dòng nước là \(5\;\left( {{\rm{km/h}}} \right)\). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\;\left( {{\rm{km/h}}} \right)\), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c \cdot {v^3} \cdot t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a;b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi bơi ngược dòng vận tốc của cá là \(v - 5\) (km/h).

Thời gian để cá vượt khoảng cách 100 km là \(t = \frac{{100}}{{v - 5}}\left( {v > 5} \right)\).

Năng lượng tiêu hao của cá khi vượt khoảng cách 100 km là \(E\left( v \right) = c \cdot {v^3} \cdot \frac{{100}}{{v - 5}} = 100c \cdot \frac{{{v^3}}}{{v - 5}}\).

Xét hàm số \(y = E\left( v \right)\) ta có \(E'\left( v \right) = 100c \cdot \frac{{3{v^2}\left( {v - 5} \right) - {v^3}}}{{{{\left( {v - 5} \right)}^2}}} = 100c \cdot \frac{{{v^2}\left( {2v - 15} \right)}}{{{{\left( {v - 5} \right)}^2}}}\).

\(E'\left( v \right) = 0 \Leftrightarrow v = 7,5\) (do \(v > 5\)). Ta có bảng biến thiên

Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\;{\rm{km}}\). Vận tốc dòng nước là (ảnh 1)

Vậy vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {5;7,5} \right)\) thì năng lượng tiêu hoa của cá giảm. Khi đó giá trị lớn nhất của \(b - a = 2,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) S

a) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\)\(\left( {2; + \infty } \right)\).

b) Ta có \(g'\left( x \right) = 2 - 3f'\left( x \right) > 0,\forall x \in \left( {0;2} \right)\), suy ra hàm số \(g\left( x \right) = 2x - 3f\left( x \right)\) đồng biến trên khoảng \(\left( {0;2} \right)\).

c) Ta có hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).

\(0 \le {\sin ^2}x \le 1,\forall x \in \mathbb{R}\)\( \Rightarrow 0 \le {\sin ^2}x < \frac{3}{2},\forall x \in \mathbb{R}\) \( \Rightarrow f\left( {{{\sin }^2}x} \right) > f\left( {\frac{3}{2}} \right)\).

d) Ta có \(y' = {\left( {2 - 3x} \right)^\prime } \cdot f'\left( {2 - 3x} \right) = - 3f'\left( {2 - 3x} \right)\).

Hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến \(y' = - 3f'\left( {2 - 3x} \right) < 0 \Leftrightarrow f'\left( {2 - 3x} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}2 - 3x < 0\\2 - 3x > 2\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > \frac{2}{3}\\x < 0\end{array} \right.\). Suy ra hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\)\(\left( {\frac{2}{3}; + \infty } \right)\).

Lời giải

Ta có \(M \in \left( C \right)\) \( \Rightarrow M\left( {{x_0};{x_0} + \frac{1}{{{x_0} + 1}}} \right)\) với \({x_0} > - 1\).

Ta có \(I{M^2} = {\left( {{x_0} + 1} \right)^2} + {\left( {{x_0} + 1 + \frac{1}{{{x_0} + 1}}} \right)^2} = 2{\left( {{x_0} + 1} \right)^2} + \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}} + 2\).

Đặt \(t = {\left( {{x_0} + 1} \right)^2},t > 0\) thì khi đó \(I{M^2} = 2t + 2 + \frac{1}{t}\).

Xét hàm số \(y = 2t + 2 + \frac{1}{t}\)\(y' = 2 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{{\sqrt 2 }}\).

Bảng biến thiên

Trên hệ trục tọa độ \(Oxy\), cho đồ thị hàm số \(\left( C \right):y = \frac{{{x^2} + x + 1}}{{x + 1}}\) với \(x >  - 1\) (ảnh 1)

Để thuyền thu được sóng tốt nhất \( \Leftrightarrow IM\) ngắn nhất \( \Leftrightarrow {x_0} = \frac{1}{{\sqrt[4]{2}}} - 1\).

Vậy \(n = 4;a = 2;b = 1 \Rightarrow a \cdot n + b = 9\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP