Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\;{\rm{km}}\). Vận tốc dòng nước là \(5\;\left( {{\rm{km/h}}} \right)\). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\;\left( {{\rm{km/h}}} \right)\), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c \cdot {v^3} \cdot t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a;b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\;{\rm{km}}\). Vận tốc dòng nước là \(5\;\left( {{\rm{km/h}}} \right)\). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\;\left( {{\rm{km/h}}} \right)\), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c \cdot {v^3} \cdot t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a;b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).
Quảng cáo
Trả lời:

Khi bơi ngược dòng vận tốc của cá là \(v - 5\) (km/h).
Thời gian để cá vượt khoảng cách 100 km là \(t = \frac{{100}}{{v - 5}}\left( {v > 5} \right)\).
Năng lượng tiêu hao của cá khi vượt khoảng cách 100 km là \(E\left( v \right) = c \cdot {v^3} \cdot \frac{{100}}{{v - 5}} = 100c \cdot \frac{{{v^3}}}{{v - 5}}\).
Xét hàm số \(y = E\left( v \right)\) ta có \(E'\left( v \right) = 100c \cdot \frac{{3{v^2}\left( {v - 5} \right) - {v^3}}}{{{{\left( {v - 5} \right)}^2}}} = 100c \cdot \frac{{{v^2}\left( {2v - 15} \right)}}{{{{\left( {v - 5} \right)}^2}}}\).
Có \(E'\left( v \right) = 0 \Leftrightarrow v = 7,5\) (do \(v > 5\)). Ta có bảng biến thiên

Vậy vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {5;7,5} \right)\) thì năng lượng tiêu hoa của cá giảm. Khi đó giá trị lớn nhất của \(b - a = 2,5\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) S, d) S
a) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).
b) Ta có \(g'\left( x \right) = 2 - 3f'\left( x \right) > 0,\forall x \in \left( {0;2} \right)\), suy ra hàm số \(g\left( x \right) = 2x - 3f\left( x \right)\) đồng biến trên khoảng \(\left( {0;2} \right)\).
c) Ta có hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {0;2} \right)\).
Mà \(0 \le {\sin ^2}x \le 1,\forall x \in \mathbb{R}\)\( \Rightarrow 0 \le {\sin ^2}x < \frac{3}{2},\forall x \in \mathbb{R}\) \( \Rightarrow f\left( {{{\sin }^2}x} \right) > f\left( {\frac{3}{2}} \right)\).
d) Ta có \(y' = {\left( {2 - 3x} \right)^\prime } \cdot f'\left( {2 - 3x} \right) = - 3f'\left( {2 - 3x} \right)\).
Hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến \(y' = - 3f'\left( {2 - 3x} \right) < 0 \Leftrightarrow f'\left( {2 - 3x} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}2 - 3x < 0\\2 - 3x > 2\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > \frac{2}{3}\\x < 0\end{array} \right.\). Suy ra hàm số \(y = f\left( {2 - 3x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {\frac{2}{3}; + \infty } \right)\).
Lời giải
Ta có \(M \in \left( C \right)\) \( \Rightarrow M\left( {{x_0};{x_0} + \frac{1}{{{x_0} + 1}}} \right)\) với \({x_0} > - 1\).
Ta có \(I{M^2} = {\left( {{x_0} + 1} \right)^2} + {\left( {{x_0} + 1 + \frac{1}{{{x_0} + 1}}} \right)^2} = 2{\left( {{x_0} + 1} \right)^2} + \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}} + 2\).
Đặt \(t = {\left( {{x_0} + 1} \right)^2},t > 0\) thì khi đó \(I{M^2} = 2t + 2 + \frac{1}{t}\).
Xét hàm số \(y = 2t + 2 + \frac{1}{t}\) có \(y' = 2 - \frac{1}{{{t^2}}} = 0 \Leftrightarrow t = \frac{1}{{\sqrt 2 }}\).
Bảng biến thiên

Để thuyền thu được sóng tốt nhất \( \Leftrightarrow IM\) ngắn nhất \( \Leftrightarrow {x_0} = \frac{1}{{\sqrt[4]{2}}} - 1\).
Vậy \(n = 4;a = 2;b = 1 \Rightarrow a \cdot n + b = 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right) \cup \left( {1\,;\,3} \right)\).
B. Hàm số nghịch biến trên khoảng \(\left( { - 1;\,3} \right){\rm{\backslash }}\left\{ 1 \right\}\).
C. Hàm số nghịch biến trên mỗi khoảng \(\left( { - 1;\,1} \right)\)và \(\left( {1\,;\,3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.