Bác tài xế A và bác tài xế B thống kê lại độ dài quãng đường (đơn vị: km) mà hai bác đã lái xe mỗi ngày trong một tháng ở bảng sau:
Độ dài quãng đường (km)
\(\left[ {50;100} \right)\)
\(\left[ {100;150} \right)\)
\(\left[ {150;200} \right)\)
\(\left[ {200;250} \right)\)
\(\left[ {250;300} \right)\)
Số ngày bác tài A lái xe
5
10
9
4
2
Số ngày bác tài B lái xe
4
8
12
6
0
a) Khoảng biến thiên về độ dài quãng đường đi mỗi ngày của bác tài A và B ở mẫu số liệu trên bằng nhau.
b) Tứ phân vị thứ nhất của mẫu số liệu về độ dài quãng đường mỗi ngày của bác tài A lớn hơn bác tài B
c) Tứ phân vị thứ ba của mẫu số liệu về quãng đường mỗi ngày của bác tài B thuộc nhóm \(\left[ {150;200} \right)\).
d) Theo khoảng biến thiên thì độ dài quãng đường mỗi ngày của bác tài A phân tán hơn độ dài quãng đường mỗi ngày bác tài B.
Bác tài xế A và bác tài xế B thống kê lại độ dài quãng đường (đơn vị: km) mà hai bác đã lái xe mỗi ngày trong một tháng ở bảng sau:
|
Độ dài quãng đường (km) |
\(\left[ {50;100} \right)\) |
\(\left[ {100;150} \right)\) |
\(\left[ {150;200} \right)\) |
\(\left[ {200;250} \right)\) |
\(\left[ {250;300} \right)\) |
|
Số ngày bác tài A lái xe |
5 |
10 |
9 |
4 |
2 |
|
Số ngày bác tài B lái xe |
4 |
8 |
12 |
6 |
0 |
a) Khoảng biến thiên về độ dài quãng đường đi mỗi ngày của bác tài A và B ở mẫu số liệu trên bằng nhau.
b) Tứ phân vị thứ nhất của mẫu số liệu về độ dài quãng đường mỗi ngày của bác tài A lớn hơn bác tài B
c) Tứ phân vị thứ ba của mẫu số liệu về quãng đường mỗi ngày của bác tài B thuộc nhóm \(\left[ {150;200} \right)\).
d) Theo khoảng biến thiên thì độ dài quãng đường mỗi ngày của bác tài A phân tán hơn độ dài quãng đường mỗi ngày bác tài B.
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) Đ
a) Khoảng biến thiên về độ dài quãng đường đi của bác tài A là \(300 - 50 = 250\).
Khoảng biến thiên về độ dài quãng đường đi của bác tài B là \(250 - 50 = 200\).
b) Tứ phân vị thứ nhất của mẫu số liệu về độ dài quãng đường mỗi ngày của bác tài A là \({Q_1} = 100 + \frac{{\frac{{30}}{4} - 5}}{{10}} \cdot 50 = 112,5\).
Tứ phân vị thứ nhất của mẫu số liệu về độ dài quãng đường mỗi ngày của bác tài B là \({Q_1} = 100 + \frac{{\frac{{30}}{4} - 4}}{8} \cdot 50 = 121,875\).
c) Tứ phân vị thứ ba của mẫu số liệu về quãng đường mỗi ngày của bác tài B là \({x_{23}}\)nên thuộc nhóm \(\left[ {150;200} \right)\).
d) Vì khoảng biến thiên về độ dài quãng đường đi của bác tài A lớn hơn bác tài B nên mức độ phân tán về độ dài quãng đường bác A phân tán hơn bác B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Lời giải
Ta có \(C'\left( v \right) = - \frac{{5400}}{{{v^2}}} + \frac{3}{2} = \frac{{3\left( {v - 60} \right)\left( {v + 60} \right)}}{{2{v^2}}}\);
\(C'\left( v \right) = 0\)\( \Leftrightarrow v = - 60\)(loại) hoặc \(v = 60\) (nhận).
Trên khoảng \(\left( {0;60} \right)\), \(C'\left( v \right) < 0\) nên hàm số nghịch biến trên khoảng này.
Trên khoảng \(\left( {60;120} \right)\), \(C'\left( v \right) > 0\) nên hàm số đồng biến trên khoảng này.
Hàm số đạt cực tiểu tại \(v = 60,{C_{CT}} = C\left( {60} \right) = 180\).
Như vậy để tiết kiệm xăng nhất tài xế nên chạy xe với tốc độ trung bình là 60 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.