Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;0;0} \right)\),\(B\left( {0;1;0} \right)\) và \(C\left( {0;0;1} \right)\). Điểm \(M\)là điểm thỏa mãn \(P = M{A^2} + 2M{B^2} - M{C^2}\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất của \(P\).
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;0;0} \right)\),\(B\left( {0;1;0} \right)\) và \(C\left( {0;0;1} \right)\). Điểm \(M\)là điểm thỏa mãn \(P = M{A^2} + 2M{B^2} - M{C^2}\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất của \(P\).
Quảng cáo
Trả lời:
Gọi \[M\left( {x;y;z} \right) \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AM} = \left( {x - 1;y;z} \right)\\\overrightarrow {BM} = \left( {x;y - 1;z} \right)\\\overrightarrow {CM} = \left( {x;y;z - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A{M^2} = {(x - 1)^2} + {y^2} + {z^2}\\B{M^2} = {x^2} + {\left( {y - 1} \right)^2} + {z^2}\\C{M^2} = {x^2} + {y^2} + {\left( {z - 1} \right)^2}\end{array} \right.\]
\[ \Rightarrow M{A^2} + 2M{B^2} - M{C^2}\]\[ = \left[ {{{(x - 1)}^2} + {y^2} + {z^2}} \right] + 2\left[ {{x^2} + {{\left( {y - 1} \right)}^2} + {z^2}} \right] - \left[ {{x^2} + {y^2} + {{\left( {z - 1} \right)}^2}} \right]\]
\[ = 2{x^2} + 2{y^2} + 2{z^2} - 2x - 4y + 2z + 2\]\[ = 2{\left( {x - \frac{1}{2}} \right)^2} + 2{\left( {y - 1} \right)^2} + 2{\left( {z + \frac{1}{2}} \right)^2} - 1 \ge - 1\].
\( \Rightarrow {P_{\min }} = - 1 \Leftrightarrow \)\[\left\{ \begin{array}{l}x = \frac{1}{2}\\y = 1\\z = - \frac{1}{2}\end{array} \right.\]\( \Leftrightarrow M\left( {\frac{1}{2};1; - \frac{1}{2}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \({\rm{Oz}}\) hướng thẳng đứng lên trời (tham khảo hình vẽ), đơn vị đo lấy theo kilômét.

Chiếc khinh khí cầu thứ nhất và thứ hai ở vị trí \(A,B\). Ta có \(A\left( {\frac{5}{2};2;\frac{4}{5}} \right),B\left( { - \frac{3}{2}; - 3;\frac{3}{5}} \right)\).
Gọi \(C\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\), \(C\left( {\frac{5}{2};2; - \frac{4}{5}} \right)\).
Khi đó \(I = BC \cap \left( {Oxy} \right)\).
\(\overrightarrow {BC} = \left( {4;5; - \frac{7}{5}} \right)\). \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + \frac{3}{2};y + 3; - \frac{3}{5}} \right)\)
\(\overrightarrow {BC} ,\overrightarrow {BI} \) cùng phương nên \(\frac{{x + \frac{3}{2}}}{4} = \frac{{y + 3}}{5} = \frac{3}{7} \Rightarrow \left\{ \begin{array}{l}x = \frac{3}{{14}}\\y = - \frac{6}{7}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{3}{{14}}\\b = \frac{6}{7}\end{array} \right. \Rightarrow 2a + 3b = 3\).
Lời giải
Ta có \(C'\left( v \right) = - \frac{{5400}}{{{v^2}}} + \frac{3}{2} = \frac{{3\left( {v - 60} \right)\left( {v + 60} \right)}}{{2{v^2}}}\);
\(C'\left( v \right) = 0\)\( \Leftrightarrow v = - 60\)(loại) hoặc \(v = 60\) (nhận).
Trên khoảng \(\left( {0;60} \right)\), \(C'\left( v \right) < 0\) nên hàm số nghịch biến trên khoảng này.
Trên khoảng \(\left( {60;120} \right)\), \(C'\left( v \right) > 0\) nên hàm số đồng biến trên khoảng này.
Hàm số đạt cực tiểu tại \(v = 60,{C_{CT}} = C\left( {60} \right) = 180\).
Như vậy để tiết kiệm xăng nhất tài xế nên chạy xe với tốc độ trung bình là 60 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.