Câu hỏi:
12/12/2024 945
Cho hàm số \(y = f\left( x \right)\)có đồ thị hàm số như hình bên dưới
a) Hàm số \(f\left( x \right)\) đồng biến trên từng khoảng xác định\(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Hàm số \(f\left( x \right)\) đạt cực đại tại\(x = - 1\)và đạt cực tiểu tại \(x = 3\).
c) Đồ thị hàm số\(f\left( x \right)\)ở hình trên là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x - 1}}\).
d) Điểm M trên đồ thị hàm số \(f\left( x \right)\) có khoảng cách đến I là nhỏ nhất (với I là giao điểm của hai tiệm cận) với hoành độ dương là\(\sqrt {2\sqrt 2 } + 1\).
Cho hàm số \(y = f\left( x \right)\)có đồ thị hàm số như hình bên dưới

a) Hàm số \(f\left( x \right)\) đồng biến trên từng khoảng xác định\(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Hàm số \(f\left( x \right)\) đạt cực đại tại\(x = - 1\)và đạt cực tiểu tại \(x = 3\).
c) Đồ thị hàm số\(f\left( x \right)\)ở hình trên là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x - 1}}\).
d) Điểm M trên đồ thị hàm số \(f\left( x \right)\) có khoảng cách đến I là nhỏ nhất (với I là giao điểm của hai tiệm cận) với hoành độ dương là\(\sqrt {2\sqrt 2 } + 1\).
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) Đ
a) Hàm số \(f\left( x \right)\)đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Điểm cực đại của đồ thị hàm số \(f\left( x \right)\) là \(\left( { - 1;0} \right)\)và điểm cực tiểu của đồ thị hàm số \(f\left( x \right)\) là \(\left( {3;8} \right)\).
c) Dựa vào đồ thị hàm số ta thấy \(x = 1\) là tiệm cận đứng của đồ thị hàm số, \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số.
Đồ thị hàm số đi qua các điểm \(\left( {3;8} \right),\left( { - 1;0} \right),\left( {0; - 1} \right)\).
Ta thấy hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x - 1}}\) có \(x = 1\) là tiệm cận đứng của đồ thị hàm số, \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số và đồ thị hàm số đi qua các điểm \(\left( {3;8} \right),\left( { - 1;0} \right),\left( {0; - 1} \right)\).
Vậy đồ thị hàm số trên là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x - 1}}\).
d) Đồ thị hàm số\(f\left( x \right)\)ở hình câu c là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x - 1}} = x + 3 + \frac{4}{{x - 1}}\) ( C )
Có \(I\left( {1;4} \right)\)là giao điểm của hai đường tiệm cận.
Gọi \(M\left( {x;y} \right) \in \left( C \right)\). Khi đó \(\overrightarrow {IM} = \left( {x - 1;y - 4} \right)\), bình phương khoảng cách IM:
\(\begin{array}{l}I{M^2} = {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2}\\I{M^2} = {\left( {x - 1} \right)^2} + {\left( {x + 3 + \frac{4}{{x - 1}} - 4} \right)^2}\end{array}\)
\(\begin{array}{l}I{M^2} = {\left( {x - 1} \right)^2} + {\left( {x - 1 + \frac{4}{{x - 1}}} \right)^2}\\I{M^2} = {\left( {x - 1} \right)^2} + {\left( {x - 1} \right)^2} + 8 + {\left( {\frac{4}{{x - 1}}} \right)^2}\end{array}\)
\[I{M^2} = 2{\left( {x - 1} \right)^2} + \frac{{16}}{{{{\left( {x - 1} \right)}^2}}} + 8\]
Theo bất đẳng thức Cauchy (AM – GM)
\[\begin{array}{l}I{M^2} \ge 2\sqrt {32} + 8 = 8\sqrt 2 + 8\\IM \ge \sqrt {8\sqrt 2 + 8} \end{array}\]
Dấu xảy ra khi \[2{\left( {x - 1} \right)^2} = \frac{{16}}{{{{\left( {x - 1} \right)}^2}}}\]\[ \Leftrightarrow {\left( {x - 1} \right)^4} = 8\]\[ \Leftrightarrow x = \pm \sqrt {2\sqrt 2 } + 1\].
Điểm M trên đồ thị hàm số \(f\left( x \right)\) có khoảng cách đến I là nhỏ nhất \[Min\,IM = \sqrt {8\sqrt 2 + 8} \](với I là giao điểm của hai tiệm cận) với hoành độ dương là\(\sqrt {2\sqrt 2 } + 1\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì điểm \(A'\) có toạ độ là \(\left( {240;450;0} \right)\) nên khoảng cách từ \(A'\) đến các trục \(Ox,Oy\) lần lượt là \(450\;{\rm{cm}}\) và \(240\;{\rm{cm}}\). Suy ra \(A'A = 450\;{\rm{cm}}\) và \(A'O' = 240\;{\rm{cm}}\).
Từ giả thiết suy ra \(\overrightarrow {A'B'} = \left( { - 120;0;300} \right)\),
do đó \(A'B' = \left| {\overrightarrow {A'B'} } \right| = \sqrt {{{( - 120)}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323(\;{\rm{cm}})\).
Vì \(O'O = A'A = 450\;{\rm{cm}}\) và \(O'\) nằm trên trục \[Oy\] nên toạ độ của điểm \(O'\) là \(\left( {0;450;0} \right)\).
Do đó \(\overline {O'B'} = \left( {120;0;300} \right)\) và \(O'B' = \left| {\overline {O'B'} } \right| = \sqrt {{{120}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323{\rm{ }}({\rm{cm}})\).
Vậy mỗi căn lều gỗ có chiều dài là \(450\;{\rm{cm}}\), chiều rộng là \(240\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là 323 cm.
\( \Rightarrow a + b + c = 1013\).
Lời giải
Ta có \(N'\left( t \right) = - 3{t^2} + 24t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 8\end{array} \right.\).
Bảng biến thiên

Từ bảng biến thiên ta thấy số người bị nhiễm bệnh tăng trong khoảng thời gian \(\left( {0;8} \right)\).
Suy ra \(a = 0;b = 8\). Vậy \(a + b = 8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.