Câu hỏi:

12/12/2024 1,444

Cho hàm số \(y = f(x) = {x^3} - 3x - 2\).

a) Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).

b) Hàm số đạt cực tiểu tại \(x = 1\).

c) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \( - 4\).

d) Giá trị nhỏ nhất của hàm số \(y = f(2x)\) trên đoạn \(\left[ { - \frac{1}{2};\frac{1}{2}} \right]\) bằng \( - 4\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) S, d) Đ

Ta có  \(y = f(x) = {x^3} - 3x - 2\)\(y' = 3{x^2} - 3\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)

Bảng biến thiên

Cho hàm số \(y = f(x) = {x^3} - 3x - 2\).  a) Hàm số đồng biến trên khoảng \(( { - 1;1} ).  b) Hàm số đạt cực tiểu tại \(x = 1\). (ảnh 1)

Dựa vào bảng biến thiên, ta có:

a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

b) Hàm số đạt cực tiểu tại \(x = 1\).

c) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \(0\).

d) Ta có \(x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right] \Leftrightarrow 2x \in \left[ { - 1;1} \right]\)

Đặt \(t = 2x,t \in \left[ { - 1;1} \right]\) , \(f(t) = {t^3} - 3t - 2\) 

Theo câu a có giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \( - 4\) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì điểm \(A'\) có toạ độ là \(\left( {240;450;0} \right)\) nên khoảng cách từ \(A'\) đến các trục \(Ox,Oy\) lần lượt là \(450\;{\rm{cm}}\)\(240\;{\rm{cm}}\). Suy ra \(A'A = 450\;{\rm{cm}}\)\(A'O' = 240\;{\rm{cm}}\).

Từ giả thiết suy ra \(\overrightarrow {A'B'} = \left( { - 120;0;300} \right)\),

do đó \(A'B' = \left| {\overrightarrow {A'B'} } \right| = \sqrt {{{( - 120)}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323(\;{\rm{cm}})\).

\(O'O = A'A = 450\;{\rm{cm}}\)\(O'\) nằm trên trục \[Oy\] nên toạ độ của điểm \(O'\)\(\left( {0;450;0} \right)\).

Do đó \(\overline {O'B'} = \left( {120;0;300} \right)\)\(O'B' = \left| {\overline {O'B'} } \right| = \sqrt {{{120}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323{\rm{ }}({\rm{cm}})\).

Vậy mỗi căn lều gỗ có chiều dài là \(450\;{\rm{cm}}\), chiều rộng là \(240\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là 323 cm.

\( \Rightarrow a + b + c = 1013\).

Lời giải

Ta có \(N'\left( t \right) = - 3{t^2} + 24t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 8\end{array} \right.\).

Bảng biến thiên

Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số (ảnh 1)

Từ bảng biến thiên ta thấy số người bị nhiễm bệnh tăng trong khoảng thời gian \(\left( {0;8} \right)\).

Suy ra \(a = 0;b = 8\). Vậy \(a + b = 8\).