Câu hỏi:

12/12/2024 3,126

Trong không gian \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;2;5} \right),B\left( {2;4; - 3} \right),C\left( {3;3;1} \right)\). Gọi \(G\) là trọng tâm của tam giác \(ABC\)\(M\) là điểm thay đổi trên mặt phẳng \(\left( {Oxy} \right)\). Độ dài \(GM\) ngắn nhất bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(G\) là trọng tâm tam giác \(ABC\), suy ra \(G\left( {2;3;1} \right)\).

Gọi \(H\) là hình chiếu vuông góc của \(G\) trên mặt phẳng \(\left( {Oxy} \right)\). Khi đó \(GH\) là khoảng cách từ \(G\) đến mặt phẳng \(\left( {Oxy} \right)\), ta có \(GH = d\left( {G,\left( {Oxy} \right)} \right) = 1\).

Với \(M\) là điểm thay đổi trên mặt phẳng \(\left( {Oxy} \right)\), ta có \(GM \ge GH = 1\).

Do đó \(GM\) ngắn nhất \( \Leftrightarrow M \equiv H\). Vậy độ dài \(GM\) ngắn nhất bằng 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì điểm \(A'\) có toạ độ là \(\left( {240;450;0} \right)\) nên khoảng cách từ \(A'\) đến các trục \(Ox,Oy\) lần lượt là \(450\;{\rm{cm}}\)\(240\;{\rm{cm}}\). Suy ra \(A'A = 450\;{\rm{cm}}\)\(A'O' = 240\;{\rm{cm}}\).

Từ giả thiết suy ra \(\overrightarrow {A'B'} = \left( { - 120;0;300} \right)\),

do đó \(A'B' = \left| {\overrightarrow {A'B'} } \right| = \sqrt {{{( - 120)}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323(\;{\rm{cm}})\).

\(O'O = A'A = 450\;{\rm{cm}}\)\(O'\) nằm trên trục \[Oy\] nên toạ độ của điểm \(O'\)\(\left( {0;450;0} \right)\).

Do đó \(\overline {O'B'} = \left( {120;0;300} \right)\)\(O'B' = \left| {\overline {O'B'} } \right| = \sqrt {{{120}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \approx 323{\rm{ }}({\rm{cm}})\).

Vậy mỗi căn lều gỗ có chiều dài là \(450\;{\rm{cm}}\), chiều rộng là \(240\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là 323 cm.

\( \Rightarrow a + b + c = 1013\).

Lời giải

Ta có \(N'\left( t \right) = - 3{t^2} + 24t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 8\end{array} \right.\).

Bảng biến thiên

Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số (ảnh 1)

Từ bảng biến thiên ta thấy số người bị nhiễm bệnh tăng trong khoảng thời gian \(\left( {0;8} \right)\).

Suy ra \(a = 0;b = 8\). Vậy \(a + b = 8\).