Câu hỏi:
12/12/2024 1,822Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow {OA} = 3\overrightarrow i - \overrightarrow k \) với \(\overrightarrow i ,\overrightarrow k \) là hai vectơ đơn vị trên hai trục tọa độ \(Ox,Oz\), hai điểm \(B\left( { - 1;2;3} \right),C\left( {1;4;1} \right)\).
a) \(A\left( {3;0; - 1} \right)\).
b) Ba điểm \(A,B,C\) thẳng hàng.
c) Điểm \(D\left( {a;b;c} \right)\) là điểm đối xứng với \(A\) qua \(B\). Khi đó \(a + b + c = 6\).
d) Điểm \(M\left( {m;n;p} \right)\) trên mặt phẳng \(\left( {Oxy} \right)\) sao cho \(M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Khi đó \(2m - n + 2024p = 0\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) Đ
a) Vì \(\overrightarrow {OA} = 3\overrightarrow i - \overrightarrow k \Rightarrow A\left( {3;0; - 1} \right)\).
b) Ta có \(\overrightarrow {AB} = \left( { - 4;2;4} \right),\overrightarrow {AC} = \left( { - 2;4;2} \right)\).
Do \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương nên suy ra \(A,B,C\) không thẳng hàng.
c) Điểm \(D\left( {a;b;c} \right)\) là điểm đối xứng với \(A\) qua \(B\) nên \(B\) là trung điểm của \(AD\).
Ta có \(\left\{ \begin{array}{l}{x_D} = 2{x_B} - {x_A} = - 5\\{y_D} = 2{y_B} - {y_A} = 4\\{z_D} = 2{z_B} - {z_A} = 7\end{array} \right.\). Suy ra \(D\left( { - 5;4;7} \right)\).
Suy ra \(a = - 5;b = 4;c = 7\). Vậy \(a + b + c = 6\).
d) Gọi \(I\left( {x;y;z} \right)\) là điểm thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \).
Ta có \(\left\{ \begin{array}{l}3 - x - 1 - x + 1 - x = 0\\0 - y + 2 - y + 4 - y = 0\\ - 1 - z + 3 - z + 1 - z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\z = 1\end{array} \right. \Rightarrow I\left( {1;2;1} \right)\).
Ta có \(M{A^2} + M{B^2} + M{C^2}\)\( = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2}\)
\( = 3M{I^2} + I{A^2} + I{B^2} + I{C^2} + 2\overrightarrow {MI} \left( {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} } \right)\)\( = 3M{I^2} + I{A^2} + I{B^2} + I{C^2}\).
Do \(I{A^2} + I{B^2} + I{C^2}\) không thay đổi nên \(M{A^2} + M{B^2} + M{C^2}\) nhỏ nhất khi \(MI\) nhỏ nhất hay \(M\) là hình chiếu của điểm \(I\) trên mặt phẳng \(\left( {Oxy} \right)\).
Do đó \(M\left( {1;2;0} \right)\). Suy ra \(m = 1;n = 2;p = 0\). Vậy \(2m - n + 2024p = 2 - 2 + 0 = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Những căn lều gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\) như trong Hình 2. Với hệ trục toạ độ \[Oxyz\] thể hiện như Hình 2 (đơn vị đo lấy theo centimét), hai điểm \(A'\) và \(B'\) có tọa độ lần lượt là \(\left( {240;450;0} \right)\) và \(\left( {120;450;300} \right)\). Mỗi căn nhà gỗ có chiều dài là \(a{\rm{ cm}}\), chiều rộng là \(b\;{\rm{cm}}\), mỗi cạnh bên của mặt tiền có độ dài là \(c\;{\rm{cm}}\). Tính \(a + b + c\) (Làm tròn đến hàng đơn vị).
Câu 2:
Xí nghiệp \(A\) sản xuất độc quyền một loại sản phẩm. Biết rằng hàm tổng chi phí sản xuất là \(TC = {x^3} - 77{x^2} + 1000x + 4000\) và hàm doanh thu là \(TR = - 2{x^2} + 1312x\), với \(x\) là số sản phẩm. Lợi nhuận của xí nghiệp \(A\) được xác định bằng hàm số \(f\left( x \right) = TR - TC\), cực đại lợi nhuận của xí nghiệp \(A\) khi đó đạt bao nhiêu sản phẩm?
Câu 3:
Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số \(N\left( t \right) = - {t^3} + 12{t^2},0 \le t \le 12\), trong đó \(N\) là số người bị nhiễm bệnh (tính bằng trăm người) và \(t\) là thời gian (tuần). Giả sử số người bị nhiễm bệnh tăng trong khoảng thời gian \(\left( {a;b} \right)\). Tính \(a + b\).
Câu 4:
Trong không gian \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;2;5} \right),B\left( {2;4; - 3} \right),C\left( {3;3;1} \right)\). Gọi \(G\) là trọng tâm của tam giác \(ABC\) và \(M\) là điểm thay đổi trên mặt phẳng \(\left( {Oxy} \right)\). Độ dài \(GM\) ngắn nhất bằng bao nhiêu?
Câu 5:
Cho hàm số \(y = f(x) = {x^3} - 3x - 2\).
a) Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).
b) Hàm số đạt cực tiểu tại \(x = 1\).
c) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \( - 4\).
d) Giá trị nhỏ nhất của hàm số \(y = f(2x)\) trên đoạn \(\left[ { - \frac{1}{2};\frac{1}{2}} \right]\) bằng \( - 4\).
Câu 6:
Thống kê chiều cao của tổ 1 và tổ 2 của lớp 10A cho bởi bảng sau:
Chiều cao (cm) |
\(\left[ {150;155} \right)\) |
\(\left[ {155;160} \right)\) |
\(\left[ {160;165} \right)\) |
\(\left[ {165;170} \right)\) |
\(\left[ {170;175} \right)\) |
\(\left[ {175;180} \right)\) |
Số học sinh tổ 1 |
3 |
2 |
2 |
1 |
3 |
0 |
Số học sinh tổ 2 |
1 |
3 |
3 |
2 |
1 |
1 |
a) Tứ phân vị thứ nhất của mẫu số liệu về chiều cao của học sinh tổ 1 là \({Q_1} = 154,375\).
b) Khoảng biến thiên của mẫu số liệu về chiều cao của học sinh tổ 1 là \(R = 25\).
c) Phương sai của mẫu số liệu về chiều cao của học sinh tổ 2 là \(s_2^2 \approx 48,88\).
d) Độ lệch chuẩn của mẫu số liệu về chiều cao của học sinh tổ 2 lớn hơn độ lệch chuẩn của mẫu số liệu về chiều cao của học sinh tổ 1.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận