Câu hỏi:
13/12/2024 140Một ô tô đang chạy đều với vận tốc \(a\left( {{\rm{m/s}}} \right)\) thì người lái đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 5t + a\left( {{\rm{m/s}}} \right)\), trong đó \(t\) là thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi vận tốc ban đầu \(a\) của ô tô là bao nhiêu (m/s), biết từ lúc đạp phanh đến khi dừng hẳn ô tô di chuyển được 40 mét.
Quảng cáo
Trả lời:
Ô tô dừng hẳn khi \(v\left( t \right) = - 5t + a = 0 \Leftrightarrow t = \frac{a}{5}\).
Vì \(\int\limits_0^{\frac{a}{5}} {v\left( t \right)dt} = 40\) nên \(\int\limits_0^{\frac{a}{5}} {\left( { - 5t + a} \right)dt} = 40\)\( \Leftrightarrow \left. {\left( {\frac{{ - 5}}{2}{t^2} + at} \right)} \right|_0^{\frac{a}{5}} = 40\)
\( \Leftrightarrow - \frac{{{a^2}}}{{10}} + \frac{{{a^2}}}{5} = 40\)\( \Leftrightarrow \frac{{{a^2}}}{{10}} = 40\)\( \Leftrightarrow a = 20\).
Vậy vận tốc ban đầu của ô tô là 20 m/s.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2,01t - 0,025{t^2}\left( {0 \le t \le 10} \right)\). Trong đó \(v\left( t \right)\)tính theo m/s, thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.
a) Quãng đường xe di chuyển được tính theo công thức là \(s\left( t \right) = 2,01 - 0,05t\left( {0 \le t \le 10} \right)\).
b) Quãng đường xe di chuyển được trong 3 giây là 8,82 m.
c) Quãng đường xe di chuyển được trong giây thứ 9 xấp xỉ \(15,277\)m.
d) Trong khoảng thời gian không quá 10 giây đầu, khi vận tốc đạt giá trị lớn nhất thì gia tốc của xe là \(1,51\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).
Câu 2:
Ông \(A\) có một cái cổng hình chữ nhật, lối vào cổng có dạng parabol có kích thước như hình vẽ. Ông \(A\) cần trang trí bề mặt (phần gạch chéo) của cổng. Ông \(A\) cần bao nhiêu tiền để trang trí, biết giá thành trang trí là \(1200000\)đồng\(/{\rm{1}}{{\rm{m}}^{\rm{2}}}\) (đơn vị triệu đồng)?
Câu 3:
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = 2x + 5\) là
Câu 4:
Trong không gian \(Oxyz\), mặt phẳng đi qua \(O\) và nhận vectơ \(\overrightarrow n = \left( {1;\, - 2;\,5} \right)\) làm vectơ pháp tuyến có phương trình là
Câu 5:
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x - 1}}{{{{\left( {x + 1} \right)}^2}}}\) trên khoảng \(\left( { - 1; + \infty } \right)\) là
Câu 6:
Trong không gian \(Oxyz\), cho \(A\left( {2;0;0} \right),B\left( {0;4;0} \right),C\left( {0;0;6} \right),D\left( {2;4;6} \right)\). Gọi \(\left( P \right)\) là mặt phẳng song song song với mặt phẳng \(\left( {ABC} \right)\), \(\left( P \right)\) cách đều \(D\) và mặt phẳng \(\left( {ABC} \right)\) có dạng \(6x + by + cz + d = 0\). Tính \(b + c + d\).
Câu 7:
Hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có \(f\left( 0 \right) = 2\) và \(f\left( {4x} \right) - f\left( x \right) = 4{x^3} + 2x,\,\forall x \in \mathbb{R}.\) Tính \(I = \int\limits_0^1 {f\left( x \right)dx} \) (kết quả làm tròn đến hàng phần trăm).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận