Tìm \(a\) để diện tích hình thang cong giới hạn bởi đồ thị \(\left( C \right):y = f\left( x \right) = \frac{2}{x},\) trục hoành và các đường thẳng \(x = 1,x = a\left( {a > 1} \right)\) bằng 2.

Quảng cáo
Trả lời:

Đáp án đúng là: B
Có \(S = \int\limits_1^a {\frac{2}{x}dx} = \left. {2\ln x} \right|_1^a = 2\ln a = 2 \Rightarrow a = e\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Chọn hệ trục tọa độ như hình vẽ
Khi đó ta có \(A \equiv O\left( {0;0} \right),B\left( {2;0} \right),I\left( {2;1} \right),J\left( {0;1} \right)\).
Phương trình đường tròn tâm \(J\) là \({x^2} + {\left( {y - 1} \right)^2} = 1 \Rightarrow y = 1 + \sqrt {1 - {x^2}} \).
Phương trình đường tròn tâm \(I\) là \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 1 \Rightarrow y = 1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} \).
Khi đó \[f\left( x \right) = \left\{ \begin{array}{l}1 + \sqrt {1 - {x^2}} \;\;\;\;\;\;\;\;{\rm{khi}}\;0 \le x < 1\\1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} \;{\rm{khi}}\;1 \le x \le 2\end{array} \right.\].
Do đó \(V = \pi \int\limits_0^1 {{{\left( {1 + \sqrt {1 - {x^2}} } \right)}^2}dx + } \pi \int\limits_1^2 {{{\left( {1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} } \right)}^2}dx} \approx 10,5\).
Lời giải
a) Đ, b) Đ, c) Đ, d) S
a) \(\overrightarrow {AB} = \left( {2; - 2;0} \right)\).
b) Mặt phẳng \(\left( {Oyz} \right)\)có phương trình: \(x = 0\).
Ta có \(d\left( {A,\left( {Oyz} \right)} \right) = \frac{{\left| 1 \right|}}{{\sqrt {{1^2}} }} = 1\).
c) \(d\left( {B,\left( P \right)} \right) = \frac{{\left| {3 - 1 + 0 + 5} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{7\sqrt 3 }}{3}\).
d) Vì \(\left( Q \right)//\left( P \right)\) nên \(\left( Q \right):x - y + z + d = 0\left( {d \ne 5} \right)\).
Vì \(d\left( {A,\left( Q \right)} \right) = d\left( {B,\left( Q \right)} \right)\) nên \(\frac{{\left| {1 - 3 + 0 + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{\left| {3 - 1 + 0 + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }}\)\( \Leftrightarrow \left| {d - 2} \right| = \left| {d + 2} \right|\)
\( \Leftrightarrow \left[ \begin{array}{l}d - 2 = d + 2\\d - 2 = - d - 2\end{array} \right.\)\( \Leftrightarrow d = 0\).
Vậy \(\left( Q \right):x - y + z = 0\). Suy ra \(b = - 1;c = 1;d = 0\). Do đó \(b + c + d = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(4x - 2y + 3z - 9 = 0\).
B. \(4x - 2y - 3z - 15 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.