Cho hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = \frac{{x + 1}}{x}\), trục hoành và hai đường thẳng \(x = 2,x = 6\). Khi đó
a) Diện tích hình phẳng \(\left( H \right)\) là \(s = 4 + \ln 3\).
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right) - 1\), trục hoành và hai đường thẳng \(x = 2;x = 6\) là \(S = 2\ln 3\).
c) Thể tích vật thể tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) là \(V = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).
d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) và các đường thẳng \(y = 1;x = 2;x = 6\) quanh trục \(Ox\) là \(V = \frac{{1 + 6\ln 3}}{3}\).
Cho hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = \frac{{x + 1}}{x}\), trục hoành và hai đường thẳng \(x = 2,x = 6\). Khi đó
a) Diện tích hình phẳng \(\left( H \right)\) là \(s = 4 + \ln 3\).
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right) - 1\), trục hoành và hai đường thẳng \(x = 2;x = 6\) là \(S = 2\ln 3\).
c) Thể tích vật thể tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) là \(V = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).
d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) và các đường thẳng \(y = 1;x = 2;x = 6\) quanh trục \(Ox\) là \(V = \frac{{1 + 6\ln 3}}{3}\).
Quảng cáo
Trả lời:

a) Đ, b) S, c) Đ, d) S
a) Ta có \(S = \int\limits_2^6 {\left| {f\left( x \right)} \right|dx} = \int\limits_2^6 {\left| {\frac{{x + 1}}{x}} \right|dx = } \int\limits_2^6 {\frac{{x + 1}}{x}dx} = \int\limits_2^6 {\left( {1 + \frac{1}{x}} \right)dx} \)
\( = \left. {\left( {x + \ln x} \right)} \right|_2^6 = 6 + \ln 6 - \left( {2 + \ln 2} \right) = 4 + \ln 3\).
b) \(S = \int\limits_2^6 {\left| {f\left( x \right) - 1} \right|dx} = \int\limits_2^6 {\left| {\frac{{x + 1}}{x} - 1} \right|dx = } \int\limits_2^6 {\frac{1}{x}dx} \)\( = \left. {\ln x} \right|_2^6 = \ln 6 - \ln 2 = \ln 3\).
c) Ta có \(V = \pi {\int\limits_2^6 {\left( {\frac{{x + 1}}{x}} \right)} ^2}dx\)\( = \pi {\int\limits_2^6 {\left( {1 + \frac{1}{x}} \right)} ^2}dx\)\( = \pi \int\limits_2^6 {\left( {1 + \frac{2}{x} + \frac{1}{{{x^2}}}} \right)} dx\)
\( = \left. {\pi \left( {x + 2\ln x - \frac{1}{x}} \right)} \right|_2^6\)\( = \pi \left( {6 + 2\ln 6 - \frac{1}{6} - 2 - 2\ln 2 + \frac{1}{2}} \right) = \pi \left( {4 + 2\ln 3 + \frac{1}{3}} \right)\)\( = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3}\).
d) \(V = \pi \int\limits_2^6 {\left( {{f^2}\left( x \right) - 1} \right)dx} \)\( = \pi \int\limits_2^6 {\left[ {{{\left( {\frac{{x + 1}}{x}} \right)}^2} - 1} \right]dx} \)\( = \pi \int\limits_2^6 {{{\left( {\frac{{x + 1}}{x}} \right)}^2}dx} - \pi \int\limits_2^6 {1dx} \)
\( = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3} - \left. {\pi x} \right|_2^6\)\( = \frac{{\left( {13 + 6\ln 3} \right)\pi }}{3} - 4\pi = \frac{{\left( {1 + 6\ln 3} \right)\pi }}{3}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Chọn hệ trục tọa độ như hình vẽ
Khi đó ta có \(A \equiv O\left( {0;0} \right),B\left( {2;0} \right),I\left( {2;1} \right),J\left( {0;1} \right)\).
Phương trình đường tròn tâm \(J\) là \({x^2} + {\left( {y - 1} \right)^2} = 1 \Rightarrow y = 1 + \sqrt {1 - {x^2}} \).
Phương trình đường tròn tâm \(I\) là \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 1 \Rightarrow y = 1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} \).
Khi đó \[f\left( x \right) = \left\{ \begin{array}{l}1 + \sqrt {1 - {x^2}} \;\;\;\;\;\;\;\;{\rm{khi}}\;0 \le x < 1\\1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} \;{\rm{khi}}\;1 \le x \le 2\end{array} \right.\].
Do đó \(V = \pi \int\limits_0^1 {{{\left( {1 + \sqrt {1 - {x^2}} } \right)}^2}dx + } \pi \int\limits_1^2 {{{\left( {1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} } \right)}^2}dx} \approx 10,5\).
Lời giải
a) Đ, b) Đ, c) Đ, d) S
a) \(\overrightarrow {AB} = \left( {2; - 2;0} \right)\).
b) Mặt phẳng \(\left( {Oyz} \right)\)có phương trình: \(x = 0\).
Ta có \(d\left( {A,\left( {Oyz} \right)} \right) = \frac{{\left| 1 \right|}}{{\sqrt {{1^2}} }} = 1\).
c) \(d\left( {B,\left( P \right)} \right) = \frac{{\left| {3 - 1 + 0 + 5} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{7\sqrt 3 }}{3}\).
d) Vì \(\left( Q \right)//\left( P \right)\) nên \(\left( Q \right):x - y + z + d = 0\left( {d \ne 5} \right)\).
Vì \(d\left( {A,\left( Q \right)} \right) = d\left( {B,\left( Q \right)} \right)\) nên \(\frac{{\left| {1 - 3 + 0 + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{\left| {3 - 1 + 0 + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }}\)\( \Leftrightarrow \left| {d - 2} \right| = \left| {d + 2} \right|\)
\( \Leftrightarrow \left[ \begin{array}{l}d - 2 = d + 2\\d - 2 = - d - 2\end{array} \right.\)\( \Leftrightarrow d = 0\).
Vậy \(\left( Q \right):x - y + z = 0\). Suy ra \(b = - 1;c = 1;d = 0\). Do đó \(b + c + d = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.