Câu hỏi:
14/12/2024 112Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục thỏa mãn \(1 \le f'\left( x \right) \le 4,\forall x \in \left[ {2;5} \right]\). Khẳng định nào dưới đây là khẳng định đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có \(1 \le f'\left( x \right) \le 4\) suy ra \(\int\limits_2^5 {1dx} \le \int\limits_2^5 {f'\left( x \right)dx} \le \int\limits_2^5 {4dx} \)\( \Rightarrow 3 \le f\left( 5 \right) - f\left( 2 \right) \le 12\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ với \(O\) là trung điểm của \(MN\), trục hoành trùng với đường thẳng \(MN\).
Giả sử \(\left( P \right):y = a{x^2} + bx + c\left( {a < 0} \right)\).
Vì \(\left( P \right)\) đi qua \(I\left( {0;6} \right),C\left( {6;0} \right),D\left( { - 6;0} \right)\).
Do đó ta có hệ \(\left\{ \begin{array}{l}36a + 6b + c = 0\\36a - 6b + c = 0\\c = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{ - 1}}{6}\\b = 0\\c = 6\end{array} \right.\).
Do đó \(\left( P \right):y = - \frac{1}{6}{x^2} + 6\).
Diện tích cần làm là \(S = \int\limits_{ - 2}^2 {\left| { - \frac{1}{6}{x^2} + 6} \right|dx} = \frac{{208}}{9}\).
Số tiền cần dùng là:\(\frac{{208}}{9}.900000 = 20800000\) đồng = 20,8 triệu đồng.
Lời giải
Đáp án đúng là: D
Ta có \(AH = d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.1 - \left( { - 2} \right) - 2.3 + 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{3}{3} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.