Câu hỏi:

14/12/2024 78

Cho hàm số \(y = 3{e^{2x}} - \ln 2\)\(g\left( x \right) = 6{e^{2x}}\).

a) \(g\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\).

b) \(\int {g\left( x \right)} dx = 3{e^{2x}} + C\).

c) \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \frac{9}{2}{e^{2x}} - \ln \left( {2x} \right) + C\).

d) \(\int {\frac{{f\left( x \right)}}{{g\left( x \right)}}} dx = \frac{x}{2} - \frac{{\ln 2}}{{12{e^{2x}}}} + C\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) S, d) S

a) Ta có \(g'\left( x \right) = 12{e^{2x}}\). Do đó \(g\left( x \right)\) không là một nguyên hàm của \(f\left( x \right)\).

b) \(\int {g\left( x \right)} dx = \int {6{e^{2x}}} dx = \int {3{e^{2x}}} d\left( {2x} \right) = 3{e^{2x}} + C\).

c) \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int {\left[ {3{e^{2x}} - \ln 2 + 6{e^{2x}}} \right]dx} = \int {\left( {9{e^{2x}} - \ln 2} \right)dx} \)\( = \frac{9}{2}{e^{2x}} - x\ln 2 + C\).

d) \(\int {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} = \int {\frac{{3{e^{2x}} - \ln 2}}{{6{e^{2x}}}}dx} = \int {\left( {\frac{1}{2} - \frac{{\ln 2}}{{6{e^{2x}}}}} \right)dx} \)\( = \frac{1}{2}x + \frac{{\ln 2}}{{12{e^{2x}}}} + C\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục tọa độ với \(O\) là trung điểm của \(MN\), trục hoành trùng với đường thẳng \(MN\).

Giả sử \(\left( P \right):y = a{x^2} + bx + c\left( {a < 0} \right)\).

\(\left( P \right)\) đi qua \(I\left( {0;6} \right),C\left( {6;0} \right),D\left( { - 6;0} \right)\).

Do đó ta có hệ \(\left\{ \begin{array}{l}36a + 6b + c = 0\\36a - 6b + c = 0\\c = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{ - 1}}{6}\\b = 0\\c = 6\end{array} \right.\).

Do đó \(\left( P \right):y = - \frac{1}{6}{x^2} + 6\).

Diện tích cần làm là \(S = \int\limits_{ - 2}^2 {\left| { - \frac{1}{6}{x^2} + 6} \right|dx} = \frac{{208}}{9}\).

Số tiền cần dùng là:\(\frac{{208}}{9}.900000 = 20800000\) đồng = 20,8 triệu đồng.

Câu 2

Trong không gian \(Oxyz\), gọi \(H\) là hình chiếu vuông góc của điểm \(A\left( {1; - 2;3} \right)\) lên mặt phẳng \(\left( P \right):2x - y - 2z + 5 = 0\). Độ dài đoạn thẳng \(AH\)

Lời giải

Đáp án đúng là: D

Ta có \(AH = d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.1 - \left( { - 2} \right) - 2.3 + 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{3}{3} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Thể tích khối tròn xoay nhận được khi quay hình phẳng giới hạn bởi đường cong \(y = 4x - {x^2}\) và trục hoành quanh trục hoành bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay