Câu hỏi:

14/12/2024 69

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {a;b} \right]\)\(f\left( a \right) = 2,f\left( b \right) = - 4\). Tính \(T = \int\limits_a^b {f'\left( x \right)dx} \).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

\(T = \int\limits_a^b {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_a^b = f\left( b \right) - f\left( a \right) = - 4 - 2 = - 6\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( \alpha \right):x - 2y + 2z + 2 = 0\). Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) và cách \(A\) một khoảng bằng 1 có dạng \(\left( \alpha \right):x - by + cz + d = 0\). Khi đó \(S = 3b - c + d\)?

Xem đáp án » 14/12/2024 13,964

Câu 2:

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn \({x^2} + {y^2} = 16\), cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) ta được thiết diện là tam giác đều. Khi đó thể tích của vật thể có dạng \(\frac{{a\sqrt 3 }}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính \(S = a + b\).

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn (ảnh 1)

Xem đáp án » 14/12/2024 7,039

Câu 3:

Gọi \(\left( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \(\left( H \right)\)\({S_1}\) và diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,y = \sqrt x \) và trục \(Oy\)\({S_2}\).

Gọi ( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \ (ảnh 1)

a) Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,x = 0,x = 1\) và trục \(Ox\) xung quanh trục \(Ox\) bằng \(\frac{{7\pi }}{3}\).

b) Giá trị \({S_1} = \frac{7}{6}\).

c) \({S_1} = {S_2}\).

d) Thể tích khối tròn xoay được tạo bởi khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng \(\pi \).

Xem đáp án » 14/12/2024 3,795

Câu 4:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {2;0;0} \right)\], \[B\left( {0;3;0} \right)\], \[C\left( {0;0; - 1} \right)\]. Phương trình của mặt phẳng \[\left( P \right)\] qua \[D\left( {1;1;1} \right)\]và song song với mặt phẳng \[\left( {ABC} \right)\]

Xem đáp án » 14/12/2024 2,985

Câu 5:

Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = {x^2},y = x\) và các đường thẳng \(x = 0;x = 1\) được tính bởi công thức

Xem đáp án » 14/12/2024 2,221

Câu 6:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 2z - 8 = 0\] \[\left( Q \right):x + 2y + 2z - 4 = 0\] bằng

Xem đáp án » 14/12/2024 2,017

Câu 7:

Trong không gian tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + y + z + 1 = 0\) và hai điểm \(A\left( {1; - 1;2} \right),B\left( {2;1;1} \right)\). Gọi \(\left( Q \right)\) là mặt phẳng chứa \(A,B\) và vuông góc với mặt phẳng \(\left( P \right)\).

a) Một vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\)\(\left( {3; - 2; - 1} \right)\).

b) Phương trình mặt phẳng \(\left( Q \right)\)\(3x - 2y - z + 3 = 0\).

c) Điểm \(M\left( {3;1;2} \right)\) không thuộc mặt phẳng \(\left( Q \right)\).

d) Mặt phẳng \(\left( Q \right)\) song song với mặt phẳng \(\left( R \right):6x - 4y - 2z - 6 = 0\).

Xem đáp án » 14/12/2024 1,120