Câu hỏi:

14/12/2024 479

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \({S_1};{S_2}\) là diện tích của hình phẳng tương ứng như trong hình vẽ. Biết \({S_1} = 4\)\({S_2} = \frac{4}{3}\). Tính \(\int\limits_1^6 {f\left( x \right)dx} \).

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \({S_1};{S_2}\) là diện tích của hình phẳng tương ứng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

\(\int\limits_1^6 {f\left( x \right)dx} \)\( = \int\limits_1^4 {f\left( x \right)dx} + \int\limits_4^6 {f\left( x \right)dx} \)\( = {S_1} - {S_2} = 4 - \frac{4}{3} = \frac{8}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) nên mặt phẳng \(\left( \beta \right)\) có dạng:\(x - 2y + 2z + d = 0\left( {d \ne 2} \right)\).

\(d\left( {M,\left( \beta \right)} \right) = 1 \Leftrightarrow \frac{{\left| {1 - 2.2 + 2.\left( { - 1} \right) + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = 1 \Leftrightarrow \left| {d - 5} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}d = 8\left( {TM} \right)\\d = 2\left( {KTM} \right)\end{array} \right.\).

Do đó \(\left( \beta \right):x - 2y + 2z + 8 = 0\). Suy ra \(b = 2;c = 2;d = 8\).

Vậy \(S = 3.2 - 2 + 8 = 12\).

Lời giải

Bán kính đường tròn là 4.

Vì cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) tại \(x\left( { - 4 \le x \le 4} \right)\).

Suy ra cạnh của tam giác đều là \(2\sqrt {16 - {x^2}} \).

Do đó diện tích tam giác đều là \(S = \frac{{\sqrt 3 }}{4}{\left( {2\sqrt {16 - {x^2}} } \right)^2} = \sqrt 3 \left( {16 - {x^2}} \right)\).

Thể tích vật thể là \(V = \int\limits_{ - 4}^4 {\left[ {\sqrt 3 \left( {16 - {x^2}} \right)} \right]dx} = \frac{{256\sqrt 3 }}{3}\).

Suy ra \(a = 256;b = 3\). Do đó \(a + b = 259\).

Câu 4

Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = {x^2},y = x\) và các đường thẳng \(x = 0;x = 1\) được tính bởi công thức

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {2;0;0} \right)\], \[B\left( {0;3;0} \right)\], \[C\left( {0;0; - 1} \right)\]. Phương trình của mặt phẳng \[\left( P \right)\] qua \[D\left( {1;1;1} \right)\]và song song với mặt phẳng \[\left( {ABC} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 2z - 8 = 0\] \[\left( Q \right):x + 2y + 2z - 4 = 0\] bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;0;0} \right),B\left( {0;1;0} \right),C\left( {0;0; - 2} \right)\). Mặt phẳng \(\left( {ABC} \right)\) có phương trình là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay