Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right)\) có phương trình \(3x + 4y + 2z + 4 = 0\) và điểm \(A\left( {1; - 2;3} \right)\). Tính khoảng cách \(d\) từ \(A\) đến \(\left( P \right)\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
\(d\left( {A,\left( P \right)} \right) = \frac{{\left| {3.1 + 4.\left( { - 2} \right) + 2.3 + 4} \right|}}{{\sqrt {{3^2} + {4^2} + {2^2}} }} = \frac{5}{{\sqrt {29} }}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
\(S = \int\limits_2^4 {\left| x \right|dx} \)
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {AB} = \left( { - 4;2;0} \right),\overrightarrow {AC} = \left( {0; - 4;4} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {8;16;16} \right) = 8\left( {1;2;2} \right)\).
Mặt phẳng \(\left( {ABC} \right)\) nhận vectơ có tọa độ \(\left( {1;2;2} \right)\) làm vectơ pháp tuyến.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.