Câu hỏi:

16/12/2024 128

Trong không gian hệ trục tọa độ \(Oxyz\), cho \(A\left( {1;2; - 1} \right),B\left( { - 1;0;1} \right)\) và mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0\). Viết phương trình mặt phẳng \(\left( Q \right)\) qua \(A,B\) và vuông góc với \(\left( P \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(\overrightarrow {AB} = \left( { - 2; - 2;2} \right)\), \(\overrightarrow {{n_P}} = \left( {1;2; - 1} \right)\).

\(\overrightarrow {{n_Q}} = - \frac{1}{2}\left[ {\overrightarrow {AB} ,\overrightarrow {{n_P}} } \right] = \left( {1;0;1} \right)\).

Mặt phẳng \(\left( Q \right)\) đi qua \(B\left( { - 1;0;1} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_Q}} = \left( {1;0;1} \right)\) có phương trình là

\(\left( {x + 1} \right) + \left( {z - 1} \right) = 0 \Leftrightarrow x + z = 0\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;2;1} \right),B\left( { - 1;4;1} \right),C\left( {3; - 2;5} \right)\). Tọa độ nào sau đây là tọa độ vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\).

Lời giải

Đáp án đúng là: A

Ta có \(\overrightarrow {AB} = \left( { - 4;2;0} \right),\overrightarrow {AC} = \left( {0; - 4;4} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {8;16;16} \right) = 8\left( {1;2;2} \right)\).

Mặt phẳng \(\left( {ABC} \right)\) nhận vectơ có tọa độ \(\left( {1;2;2} \right)\) làm vectơ pháp tuyến.

Câu 2

Diện tích của hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = x\), trục hoành và hai đường thẳng \(x = 2;x = 4\) được tính theo công thức

Lời giải

Đáp án đúng là: B

\(S = \int\limits_2^4 {\left| x \right|dx} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay