Câu hỏi:

20/12/2024 155

Cho dạng toàn phương Q: R3 -> R có ma trận trong cơ sở chính tắc \[A = \left( {\begin{array}{*{20}{c}}{17}&2&{ - 2}\\{ - 2}&{14}&{ - 4}\\{ - 2}&{ - 4}&{14}\end{array}} \right)\]. Tìm một cơ sở \[\{ {v_1},{v_2},{v_3}\} \]của R3 sao cho biểu thức toạ độ của Q trong cơ sở này có dạng chính tắc \[\left( {x,y,z} \right) = X{v_1} + Y{v_2} + Z{v_3};Q\left( {x,y,z} \right) = \alpha {x^2} + \beta {y^2} + \gamma {z^2}\]

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ma trận trực giao

Xem đáp án » 20/12/2024 217

Câu 2:

Trong không gian véc tơ R4 xét tích vô hướng thông thường. Tìm một cơ sở của không gian W gồm các véc tơ trực giao với hai véc tơ: \[{u_1} = \left( {1, - 2,3,4} \right),{v_2} = \left( {3, - 5,7,8} \right)\]

Xem đáp án » 20/12/2024 146

Câu 3:

Trong không gian véc tơ R5 xét tích vô hướng thông thường. Tìm một cơ sở của phần bù trực giao W của không gian: \[W = span\{ {u_1} = (1,2,3, - 1,2),{u_1} = (2,4,7,2, - 1)\} \]

Xem đáp án » 20/12/2024 137

Câu 4:

Cho dạng toàn phương Q: R3 -> R  xác định bởi \[Q\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} + 4xy + 4xz + 2yz\]. Tìm một cơ sở \[\left\{ {v1,v2,v3} \right\}\]của R3 sao cho biểu thức toạ độ của Q trong cơ sở này có dạng chính tắc:\[\left( {x,y,z} \right) = X{v_1} + Y{v_2} + Z{v_3};Q\left( {x,y,z} \right) = \alpha {x^2} + \beta {y^2} + \gamma {z^2}\]

Xem đáp án » 20/12/2024 128

Câu 5:

Cho A, B là hai ma trận vuông cấp n≥2. Trường hợp nào sau đây luôn đúng?

Xem đáp án » 20/12/2024 101

Câu 6:

Cho dạng toàn phương Q: R3 -> R có ma trận trong cơ sở chính tắc \[A = \left( {\begin{array}{*{20}{c}}1&m&{ - 1}\\m&1&2\\{ - 1}&2&5\end{array}} \right)\]Với giá trị nào của tham số m thì dạng toàn phương Q , xác định dương:

Xem đáp án » 20/12/2024 96

Bình luận


Bình luận