Câu hỏi:

20/12/2024 63

Để tính tích phân \[I = \mathop \smallint \limits_0^{\frac{7}{2}} \frac{{dx}}{{\sqrt[3]{{2x + 1}}}}\], một sinh viên giải theo mấy bước dưới đây: Bước 1: Đặt \[t = \sqrt[3]{{2x + 1}}\]. Suy ra \[{t^3} = 2x + 1\]và \[3{t^2}dt = 2dx\,\,\,hay\,\,\,dx = \frac{2}{3}{t^2}dt\]

Bước 2 : Đổi cận \[x = 0 \Rightarrow t = 1;x = \frac{7}{2} \Rightarrow t = 2\]

Bước 3: \[I = \frac{3}{2}\mathop \smallint \limits_1^2 \frac{{{t^2}dt}}{t} = \frac{3}{2}\mathop \smallint \limits_1^2 tdt = \frac{3}{4}\left[ {{t^2}} \right]_1^2 = \frac{9}{4}\]

Lời giải đó đúng hay sai. Nếu sai thì sai từ bước nào?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Chọn đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính diện tích hình phẳng giới hạn bởi đường cong \[y = \frac{{{x^2}}}{3},y = 4 - \frac{{2{x^2}}}{3}\]

Xem đáp án » 20/12/2024 98

Câu 2:

Tính tích phân \[\smallint \frac{{dx}}{{\sqrt {2 - 7{x^2}} }}\]

Xem đáp án » 20/12/2024 87

Câu 3:

Trong các tích phân suy rộng dưới đây, tích phân suy rộng nào hội tụ?

Xem đáp án » 20/12/2024 87

Câu 4:

Tính tích phân \[I = \mathop \smallint \limits_{ - 2}^{ - 1} \frac{{dx}}{{x\sqrt {{x^2} - 1} }}\]

Xem đáp án » 20/12/2024 86

Câu 5:

Trong các tích phân suy rộng dưới đây, tích phân suy rộng nào hội tụ tuyệt đối?

Xem đáp án » 20/12/2024 77

Câu 6:

Tính tích phân \[\smallint \frac{{dx}}{{\sqrt {1 + {e^{2x}}} }}\]

Xem đáp án » 20/12/2024 76

Câu 7:

Tính \[I = \mathop \smallint \limits_0^1 \frac{{dx}}{{\sqrt {1 + 3x} }}\]

Xem đáp án » 20/12/2024 73
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua