Câu hỏi:

09/01/2025 1,731 Lưu

Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng \(\sin \frac{A}{2} \le \frac{a}{{b + c}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Vẽ đường phân giác AD của tam giác ABC.

Theo tính chất đường phân giác của tam giác, ta có: \(\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\).

Suy ra \(\frac{{BD}}{{AB}} = \frac{{BD + DC}}{{AB + AC}} = \frac{{BC}}{{AC + AC}}\).

Vậy \(\frac{{BD}}{{AB}} = \frac{a}{{b + c}}\).

Kẻ BI⊥AD (I ∈ AD), suy ra BI ≤ BD.

∆IAB có \(\widehat {AIB} = 90^\circ \).

Do đó, sin\(\widehat {BAI}\) = \(\frac{{BI}}{{AB}}\) hay \(\sin \frac{A}{2} \le \frac{a}{{b + c}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Ta có: \(\widehat {AMH} = 2\alpha \).

Suy ra sin2α = \(\frac{{AH}}{{AM}} = \frac{{2AH}}{{2AM}} = \frac{{2AH}}{{BC}} = 2\frac{{AB.AC}}{{B{C^2}}} = 2\sin \alpha .\cos \alpha \).

b) 1 + cos2α = \(1 + \sin \widehat {AMH} = 1 + \frac{{HM}}{{AM}} = \frac{{HC}}{{AM}} = \frac{{2HC}}{{BC}} = 2.\frac{{A{C^2}}}{{B{C^2}}} = 2{\cos ^2}\alpha \).

c) 1 – cos2α = \(1 - \cos \widehat {AMH} = 1 - \frac{{HM}}{{AM}} = \frac{{HB}}{{AM}} = \frac{{2BH}}{{BC}} = 2.\frac{{A{B^2}}}{{B{C^2}}} = 2{\sin ^2}\alpha \).

Lời giải

Media VietJack

Ta có: tanB = \(\frac{{AD}}{{BD}}\); tanC = \(\frac{{AD}}{{CD}}\) suy ra tanB.tanC = \(\frac{{A{D^2}}}{{CD.BD}}\) (1)

Có \(\widehat {HBD} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\)); \(\widehat {HDB} = \widehat {ADC}\) = 90°.

Do đó, ∆BDH và ∆ADC đồng dạng theo trường hợp góc góc.

Suy ra \(\frac{{DH}}{{DC}} = \frac{{BD}}{{AD}}\), do đó BD.DC = DH.AD (2).

Từ (1) và (2) suy ra tanB.tanC = \(\frac{{A{D^2}}}{{DH.AD}} = \frac{{AD}}{{DH}}\) (3).

Theo giả thiết \(\frac{{HD}}{{AH}} = \frac{1}{2}\) suy ra \(\frac{{HD}}{{AH + HD}} = \frac{1}{3}\) hay \(\frac{{HD}}{{AD}} = \frac{1}{3}\).

Suy ra AD = 3HD.

Thay vào (3), ta được: tanB.tanC = \(\frac{{3HD}}{{HD}}\) = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 3sin2xcos2x.

B. sin2x.

C. 1 – 3sin2xcos2x.

D. 2 + sin2x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. sinA = sin(B + C).

B. tanA = tan(B + C).

C. cos\(\frac{A}{2}\) = sin\(\frac{{B + C}}{2}\) .

D. tanA = −tan(B + C).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\cos ^2}\frac{\alpha }{2} + {\sin ^2}\frac{\alpha }{2} = \frac{1}{2}\).

B. \({\cos ^2}\frac{\alpha }{3} + {\sin ^2}\frac{\alpha }{3} = \frac{1}{3}\).

C. \({\cos ^2}\frac{\alpha }{4} + {\sin ^2}\frac{\alpha }{4} = \frac{1}{4}\).

D. \(5\left( {{{\cos }^2}\frac{\alpha }{5} + {{\sin }^2}\frac{\alpha }{5}} \right) = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP