Câu hỏi:
09/01/2025 57Cho tam giác ABC có ba góc nhọn, BC = a, AC = b, AB = c. Chứng minh rằng: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Vẽ AH⊥BC, H ∈ BC.
Vì trong tam giác HAB có \(\widehat H = 90^\circ \) nên sin B = \(\frac{{AH}}{{AB}}\).
Do trong tam giác AHC có \(\widehat H = 90^\circ \) nên sin C = \(\frac{{AH}}{{AC}}\).
Do đó, \(\frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}} = \frac{b}{c}\) suy ra \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Tương tự, ta suy ra \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\).
Vậy \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng \(\sin \frac{A}{2} \le \frac{a}{{b + c}}\).
Câu 3:
Cho tam giác ABC vuông tại A (AB < AC), \(\widehat C = \alpha < 45^\circ \), đường trung tuyến AM, đường cao AH, MA = MB = MC = a. Chứng minh rằng:
a) sin2α = 2sinαcosα;
b) 1 + cos2α = 2cos2α;
c) 1 – cos2α = 2sin2α.
Câu 4:
Cho góc x với 0° < x < 90°. Trong các đẳng thức dưới đây, đẳng thức nào là đúng?
>Câu 7:
Chọn hệ thức đúng được suy ra từ hệ thức cos2α + sin2α = 1 với 0° ≤ α ≤ 180°?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận