Cho tam giác ABC có ba góc nhọn, BC = a, AC = b, AB = c. Chứng minh rằng: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Quảng cáo
Trả lời:
Hướng dẫn giải

Vẽ AH⊥BC, H ∈ BC.
Vì trong tam giác HAB có \(\widehat H = 90^\circ \) nên sin B = \(\frac{{AH}}{{AB}}\).
Do trong tam giác AHC có \(\widehat H = 90^\circ \) nên sin C = \(\frac{{AH}}{{AC}}\).
Do đó, \(\frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}} = \frac{b}{c}\) suy ra \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Tương tự, ta suy ra \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\).
Vậy \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải

Vẽ đường phân giác AD của tam giác ABC.
Theo tính chất đường phân giác của tam giác, ta có: \(\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\).
Suy ra \(\frac{{BD}}{{AB}} = \frac{{BD + DC}}{{AB + AC}} = \frac{{BC}}{{AC + AC}}\).
Vậy \(\frac{{BD}}{{AB}} = \frac{a}{{b + c}}\).
Kẻ BI⊥AD (I ∈ AD), suy ra BI ≤ BD.
∆IAB có \(\widehat {AIB} = 90^\circ \).
Do đó, sin\(\widehat {BAI}\) = \(\frac{{BI}}{{AB}}\) hay \(\sin \frac{A}{2} \le \frac{a}{{b + c}}\).
Lời giải

a) Ta có: \(\widehat {AMH} = 2\alpha \).
Suy ra sin2α = \(\frac{{AH}}{{AM}} = \frac{{2AH}}{{2AM}} = \frac{{2AH}}{{BC}} = 2\frac{{AB.AC}}{{B{C^2}}} = 2\sin \alpha .\cos \alpha \).
b) 1 + cos2α = \(1 + \sin \widehat {AMH} = 1 + \frac{{HM}}{{AM}} = \frac{{HC}}{{AM}} = \frac{{2HC}}{{BC}} = 2.\frac{{A{C^2}}}{{B{C^2}}} = 2{\cos ^2}\alpha \).
c) 1 – cos2α = \(1 - \cos \widehat {AMH} = 1 - \frac{{HM}}{{AM}} = \frac{{HB}}{{AM}} = \frac{{2BH}}{{BC}} = 2.\frac{{A{B^2}}}{{B{C^2}}} = 2{\sin ^2}\alpha \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 3sin2xcos2x.
B. sin2x.
C. 1 – 3sin2xcos2x.
D. 2 + sin2x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. sinA = sin(B + C).
B. tanA = tan(B + C).
C. cos\(\frac{A}{2}\) = sin\(\frac{{B + C}}{2}\) .
D. tanA = −tan(B + C).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \({\cos ^2}\frac{\alpha }{2} + {\sin ^2}\frac{\alpha }{2} = \frac{1}{2}\).
B. \({\cos ^2}\frac{\alpha }{3} + {\sin ^2}\frac{\alpha }{3} = \frac{1}{3}\).
C. \({\cos ^2}\frac{\alpha }{4} + {\sin ^2}\frac{\alpha }{4} = \frac{1}{4}\).
D. \(5\left( {{{\cos }^2}\frac{\alpha }{5} + {{\sin }^2}\frac{\alpha }{5}} \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.