Câu hỏi:
09/01/2025 8Cho tam giác ABC vuông tại A (AB < AC), \(\widehat C = \alpha < 45^\circ \), đường trung tuyến AM, đường cao AH, MA = MB = MC = a. Chứng minh rằng:
a) sin2α = 2sinαcosα;
b) 1 + cos2α = 2cos2α;
c) 1 – cos2α = 2sin2α.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: \(\widehat {AMH} = 2\alpha \).
Suy ra sin2α = \(\frac{{AH}}{{AM}} = \frac{{2AH}}{{2AM}} = \frac{{2AH}}{{BC}} = 2\frac{{AB.AC}}{{B{C^2}}} = 2\sin \alpha .\cos \alpha \).
b) 1 + cos2α = \(1 + \sin \widehat {AMH} = 1 + \frac{{HM}}{{AM}} = \frac{{HC}}{{AM}} = \frac{{2HC}}{{BC}} = 2.\frac{{A{C^2}}}{{B{C^2}}} = 2{\cos ^2}\alpha \).
c) 1 – cos2α = \(1 - \cos \widehat {AMH} = 1 - \frac{{HM}}{{AM}} = \frac{{HB}}{{AM}} = \frac{{2BH}}{{BC}} = 2.\frac{{A{B^2}}}{{B{C^2}}} = 2{\sin ^2}\alpha \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có ba góc nhọn, BC = a, AC = b, AB = c. Chứng minh rằng: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Câu 2:
Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng \(\sin \frac{A}{2} \le \frac{a}{{b + c}}\).
Câu 3:
Cho tam giác ABC vuông tại A. Chứng minh rằng \(\frac{{AC}}{{AB}} = \frac{{\sin B}}{{\sin C}}\).
Câu 6:
Cho góc x với 0° < x < 90°. Trong các đẳng thức dưới đây, đẳng thức nào là đúng?
>Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!