Câu hỏi:
12/01/2025 552Dân số thế giới được tính theo công thức \(S = A.{e^{n.r}}\) trong đó \(A\) là dân số của năm lấy làm mốc tính, \(S\) là dân số sau \(n\) năm, \(r\) là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47% một năm. Như vậy nếu tỉ lệ tăng dân số hằng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \(S = A.{e^{nr}} \Leftrightarrow {e^{nr}} = \frac{S}{A} \Leftrightarrow nr = \ln \frac{S}{A} \Leftrightarrow n = \frac{1}{r}\ln \frac{S}{A}\).
Với S = 93713000 người; \(A = 80902400\) người; \(r = \frac{{1,47}}{{100}} = 0,0147/\)năm.
Suy ra \(n = \frac{1}{{0,0147}}\ln \frac{{93713000}}{{80902400}} \approx 10\).
Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có \({\log _{{a^2}}}\left( {a{b^2}} \right) = \frac{{{{\log }_a}\left( {a{b^2}} \right)}}{{{{\log }_a}{a^2}}}\)\( = \frac{{{{\log }_a}a + {{\log }_a}{b^2}}}{2}\)\( = \frac{{1 + 2{{\log }_a}b}}{2}\)\( = \frac{{1 + 4}}{2} = \frac{5}{2}\).
Lời giải
Đáp án đúng là: B
Gọi \(M\) là trung điểm của \(BC\).
Vì tam giác \(ABC\) là tam giác đều nên \(AM \bot BC\) mà \(SA \bot BC\) (do \(SA \bot \left( {ABC} \right)\)) nên \(BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).
Do đó \(\left[ {S,BC,A} \right] = \widehat {SMA}\).
Vì tam giác \(ABC\) đều nên \(AM = \frac{{a\sqrt 3 }}{2}\) mà \(SA = \frac{{a\sqrt 3 }}{2}\) nên tam giác \(SAM\)vuông cân tại \(A\).
Suy ra \(\widehat {SMA} = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.