Câu hỏi:

12/01/2025 223 Lưu

Tập nghiệm \(S\) của bất phương trình \(\log x < 1\) là

A. \(S = \left( { - \infty ;10} \right)\).

B. \(S = \left( {0;10} \right)\).

C. \(S = \left( {10; + \infty } \right)\).

D. \(S = \left( { - \infty ;1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Điều kiện: \(x > 0\).

Ta có \(\log x < 1\)\( \Leftrightarrow x < 10\).

Kết hợp điều kiện ta có tập nghiệm của bất phương trình là \(S = \left( {0;10} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 18,2

Diện tích đáy lớn là \[{S_1} = \frac{{{{6.2}^2}.\sqrt 3 }}{4} = 6\sqrt 3 \].

Diện tích đáy nhỏ là \[{S_2} = \frac{{{{6.1}^2}.\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}\].

Thể tích của chậu nước là \(V = \frac{1}{3}\left( {{S_1} + {S_2} + \sqrt {{S_1}.{S_2}} } \right).h = \frac{1}{3}\left( {6\sqrt 3 + \frac{{3\sqrt 3 }}{2} + \sqrt {6\sqrt 3 .\frac{{3\sqrt 3 }}{2}} } \right).3 \approx 18,2\).

Lời giải

Hướng dẫn giải

Đây là dạng đồ thị của hàm số \(y = {\log _a}x\).

Hàm số trên đồng biến nên \(a > 1\).

Mà đồ thị hàm số đi qua điểm \(\left( {2;1} \right)\) nên đồ thị đã cho là đồ thị của hàm số \(y = {\log _2}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

B. \(\left\{ \begin{array}{l}a \bot b\\a \bot \left( \alpha \right)\end{array} \right. \Rightarrow b//\left( \alpha \right)\).

C. \(\left\{ \begin{array}{l}a \bot b\\a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

D. \(\left\{ \begin{array}{l}\left( \alpha \right) \bot \left( \beta \right)\\a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\end{array} \right. \Rightarrow a \bot b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP