Câu hỏi:
12/01/2025 236Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh \(a\) và các cạnh bên bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm \(AD\) và \(SD\). Số đo góc \(\left( {MN,SC} \right)\) bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi \(H\) là trung điểm của \(CD\). Suy ra \(NH//SC\).
Do đó \(\left( {SC,MN} \right) = \left( {NH,MN} \right) = \widehat {MNH}\).
Ta có \(MN = NH = \frac{a}{2};MH = \frac{{AC}}{2} = \frac{{\sqrt {{a^2} + {a^2}} }}{2} = \frac{{a\sqrt 2 }}{2}\).
Vì \(M{N^2} + H{N^2} = M{H^2}\) nên \(\Delta MNH\) vuông tại \(N\).
Do đó \(\widehat {MNH} = 90^\circ \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Gọi \(H\) là trung điểm của \(AB\) và \(SH \bot \left( {ABCD} \right)\), gọi \(K\) là trung điểm của cạnh \(AD\). Góc giữa hai đường thẳng \(BK\) và \(SC\) bằng bao nhiêu độ?
Câu 2:
Cho các đường thẳng \(a,b\) và các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\). Chọn mệnh đề đúng trong các mệnh đề sau
Câu 3:
Kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều với chiều cao 98 m và cạnh đáy 180 m. Tính số đo góc tạo bởi mặt bên và mặt đáy của kim tự tháp đó (đơn vị đo góc là độ, làm tròn đến hàng phần chục).
Câu 5:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Góc giữa hai đường thẳng \(SD\) và \(BC\) bằng
Câu 6:
Cho hình chóp đều \(S.ABC\) có \(ABC\) là tam giác đều cạnh \(a\), cạnh bên \(SA = \frac{{a\sqrt {21} }}{6}\). Gọi \(G\) là trọng tâm của \(\Delta ABC\) và kẻ \(AM \bot BC\).
a) Đường thẳng \(SG\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).
b) \(SM \bot BC\).
c) Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {SMA}\).
d) Giá trị góc \(\alpha \) giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \).
Câu 7:
Một ngân hàng \(X\), quy định về số tiền nhận được của khách hàng sau \(n\) năm gửi tiền vào ngân hàng tuân theo công thức \(P\left( n \right) = A{\left( {1 + 8\% } \right)^n}\), trong đó \(A\) là số tiền gửi ban đầu của khách hàng. Hỏi số tiền ít nhất mà khách hàng phải gửi là bao nhiêu để sau 3 năm khách hàng đó nhận được lớn hơn 850 triệu đồng (kết quả làm tròn đến hàng triệu).
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận