Câu hỏi:

12/01/2025 1,466 Lưu

Cho tam giác \(ABC\) vuông cân tại \(B\) và \(AB = a\). Trên đường thẳng qua \(A\) vuông góc với \(\left( {ABC} \right)\) lấy điểm \(S\) sao cho \(SA = a\). Tính số đo góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\).

A. \(60^\circ \).

B. \(45^\circ \).

C. \(30^\circ \).

D. \(90^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác  A B C  vuông cân tại  B  và  A B = a . Trên đường thẳng qua  A  vuông góc với  ( A B C )  lấy điểm  S  sao cho  S A = a . Tính số đo góc giữa hai mặt phẳng  ( S B C )  và  ( A B C ) . (ảnh 1)Đáp án đúng là: B

Ta có \(BC \bot AB\) và \(BC \bot SA\) suy ra \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

Vì \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\AB \bot BC\\SB \bot BC\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \widehat {SBA}\).

Vì \(\Delta SAB\) vuông cân tại \(A\) nên \(\widehat {SBA} = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 90

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình vuông. Gọi  H  là trung điểm của  A B  và  S H ⊥ ( A B C D ) , gọi  K  là trung điểm của cạnh  A D . Góc giữa hai đường thẳng  B K  và  S C  bằng bao nhiêu độ? (ảnh 1)

Vì \(\Delta ABK = \Delta BCH\) (\(AB = BC,AK = BH,\widehat {KAB} = \widehat {CBH} = 90^\circ \)) nên \(\widehat {BHC} = \widehat {BKA}\).

Có \(\widehat {ABK} + \widehat {BKA} = 90^\circ \Rightarrow \widehat {ABK} + \widehat {BHC} = 90^\circ \)\( \Rightarrow BK \bot CH\)(1).

Mà \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot BK\) (2).

Từ (1) và (2), ta có \(BK \bot \left( {SCH} \right) \Rightarrow BK \bot SC\).

Do đó \(\left( {BK,SC} \right) = 90^\circ \).

Câu 2

A. \(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

B. \(\left\{ \begin{array}{l}a \bot b\\a \bot \left( \alpha \right)\end{array} \right. \Rightarrow b//\left( \alpha \right)\).

C. \(\left\{ \begin{array}{l}a \bot b\\a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

D. \(\left\{ \begin{array}{l}\left( \alpha \right) \bot \left( \beta \right)\\a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\end{array} \right. \Rightarrow a \bot b\).

Lời giải

Đáp án đúng là: A

\(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).

Câu 4

A. \(\frac{5}{{2a}}\).

B. \(\frac{{5a}}{2}\).

C. \(\frac{2}{{5a}}\).

D. \(\frac{{2a}}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Góc giữa hai đường thẳng \(SD\) và \(DC\).

B. Góc giữa hai đường thẳng \(SD\) và \(AD\).

C. Góc giữa hai đường thẳng \(SD\) và \(BD\).

D. Góc giữa hai đường thẳng \(SD\) và \(SC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP