Cho tam giác ABC cân ở A, đường cao AH = 2 cm, BC = 8 cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D. Tính đường kính của đường tròn đi qua các điểm A, B, C, D.
Câu hỏi trong đề: 12 bài tập Tính bán kính đường tròn có lời giải !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có tam giác ABC cân tại A có đường cao AH nên AH cũng là đường phân giác \(\widehat {CAD} = \widehat {DAB}\).
Suy ra ∆ACD = ∆ABD (c.g.c) nên \(\widehat {ABD} = \widehat {ACD} = 90^\circ \).
Lấy I là trung điểm AD, Xét hai tam giác vuông ABD và ACD có:
IA = ID = IB = IC = \(\frac{{DA}}{2}\).
Nên I là điểm cách đều A, B, D, C hay A, B, D, C cùng nằm trên đường tròn tâm I đường kính AD.
Vì BC = 8 cm suy ra BH = 4 cm.
Áp dụng định lý Pythagore vào tam giác AHB, ta có:
AB = \(\sqrt {A{H^2} + B{H^2}} = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 \).
Ta có ∆ABD đồng dạng với ∆HAB suy ra AB2 = AH.AD
hay AD = \(\frac{{A{B^2}}}{{AH}} = \frac{{20}}{2}\) = 10 cm.
Vậy đường kính cần tìm là 10 cm.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì tam giác ABC vuông tại A nên tâm đường tròn đi qua 3 đỉnh A, B, C là trung điểm của cạnh huyền BC.
Suy ra A, B, C cùng thuộc một đường tròn bán kính \(\frac{{BC}}{2}\).
Gọi E là trung điểm của BC.
Áp dụng định lí Pythagore vào tam giác ABC, ta có:
AB2 + AC2 = BC2
62 + 82 = BC2
Suy ra BC = 10 cm.
Suy ra bán kính đường tròn đi qua ba cạnh A, B, C là: \(\frac{{BC}}{2}\) = 5 cm.
Lời giải
Đáp án đúng là: B
Xét tam giác OAB có OA = OB = R nên tam giác OAB cân tại O.
Có OH vuông góc với AB tại H nên H là trung điểm của AB.
Xét tam giác HAO vuông tại H có OH = 1 cm và AH = \(\frac{{AB}}{2} = 2\) cm.
Áp dụng định lí Pythagore vào tam giác HOA, ta có:
OA2 = OH2 + HA2 = 12 + 22 = 5
Suy ra OA = \(\sqrt 5 \) cm.
Vậy bán kính đường tròn là \(\sqrt 5 \) cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.