Câu hỏi:
31/01/2025 10Cho miếng giấy hình tam giác ABC. Cắt tam giác này dọc theo ba đường trung bình của nó ta thu được 4 tam giác mới, gọi số tam giác có được là T1. Chọn 1 trong 4 tam giác được tạo thành và cắt nó theo ba đường trung bình, số tam giác vừa nhận được do việc cắt T1 là T2… Lặp lại quá trình này ta nhận được một dãy vô hạn các tam giác \[{{\rm{T}}_{\rm{1}}}{\rm{, }}{{\rm{T}}_{\rm{2}}}{\rm{, }}{{\rm{T}}_{\rm{3}}}{\rm{, }}...{\rm{, }}{{\rm{T}}_{\rm{n}}}{\rm{, }}...\] Hãy tính tổng 100 số hạng đầu tiên của dãy số (Tn).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Ở lần cắt đầu tiên có \[{{\rm{T}}_{\rm{1}}}{\rm{ = 4}}\] tam giác.
Ở lần cắt thứ hai có \[{{\rm{T}}_1} - 1\] tam giác được giữ nguyên và có thêm 4 tam giác được tạo thành. Vậy ở lần cắt thứ hai có \[{{\rm{T}}_{\rm{2}}}{\rm{ = }}\left( {{{\rm{T}}_{\rm{1}}} - {\rm{1}}} \right){\rm{ + 4 = }}{{\rm{T}}_{\rm{1}}}{\rm{ + 3}}\] tam giác.
Ở lần cắt thứ ba có \[{{\rm{T}}_{\rm{2}}} - 1\] tam giác được giữ nguyên và có thêm 4 tam giác được tạo thành. Vậy ở lần cắt thứ ba có \[{{\rm{T}}_{\rm{3}}}{\rm{ = }}\left( {{{\rm{T}}_{\rm{2}}} - {\rm{1}}} \right){\rm{ + 4 = }}{{\rm{T}}_{\rm{2}}}{\rm{ + 3}}\] tam giác.
…
Ở lần cắt thứ n có \[{{\rm{T}}_{{\rm{n}} - {\rm{1}}}} - 1\] tam giác được giữ nguyên và có thêm 4 tam giác được tạo thành. Vậy ở lần cắt thứ n có \[{{\rm{T}}_{\rm{n}}}{\rm{ = }}\left( {{{\rm{T}}_{{\rm{n}} - {\rm{1}}}} - {\rm{1}}} \right){\rm{ + 4 = }}{{\rm{T}}_{{\rm{n}} - {\rm{1}}}}{\rm{ + 3}}\] tam giác.
Vậy dãy số (Tn) là một cấp số cộng có số hạng đầu \[{{\rm{T}}_{\rm{1}}} = 4\] và công sai d = 3.
Tổng 100 số hạng đầu tiên của dãy số (Tn) là:
\[{{\rm{S}}_{{\rm{100}}}}{\rm{ = }}\frac{{{\rm{100}}\left[ {{\rm{2}}{{\rm{T}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{100}} - {\rm{1}}} \right){\rm{d}}} \right]}}{{\rm{2}}}{\rm{ = }}\frac{{{\rm{100}}\left[ {{\rm{2}}{\rm{.4 + 99}}{\rm{.3}}} \right]}}{{\rm{2}}}{\rm{ = 15250}}\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số cộng (un) biết: \(\left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_{\rm{7}}} - {{\rm{u}}_{\rm{3}}}{\rm{ = 8}}}\\{{{\rm{u}}_{\rm{2}}}{{\rm{u}}_{\rm{7}}}{\rm{ = 75}}}\end{array}} \right.\). Chọn đáp án đúng.
Câu 2:
Cho cấp số cộng (un) với số hạng đầu u1 và công sai d. Số hạng tổng quát của cấp số cộng đã cho được tính theo công thức nào dưới đây ?
Câu 3:
Cho cấp số cộng (un), biết \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{5, d = 3}}\]. Số 100 là số hạng thứ bao nhiêu?
Câu 4:
Cho cấp số cộng (un)có: \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{1, d = 2, }}{{\rm{S}}_{\rm{n}}}{\rm{ = 483}}\]. Hỏi cấp số cộng có bao nhiêu số hạng?
Câu 5:
Tìm công sai của cấp số cộng có:\(\left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_{\rm{3}}}{\rm{ + }}{{\rm{u}}_{\rm{5}}}{\rm{ = 14}}}\\{{{\rm{S}}_{{\rm{12}}}}{\rm{ = 129}}}\end{array}} \right.\)
Câu 6:
Cho cấp số cộng có \[{{\rm{u}}_{\rm{4}}}{\rm{ = }} - {\rm{12, }}{{\rm{u}}_{{\rm{14}}}}{\rm{ = 18}}\]. Khi đó tổng của 16 số hạng đầu tiên cấp số cộng là?
Câu 7:
Cho a, b, c lập thành một cấp số cộng. Đẳng thức nào sau đây là đúng?
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
48 câu Chủ đề 1: Vectơ trong không gian
về câu hỏi!