Câu hỏi:
10/02/2025 1,782
Trong mặt phẳng gắn hệ trục tọa độ \(Oxy\), hai tàu chuyển động đều, cùng xuất phát từ điểm \(O\). Sau 2 giờ, tàu một di chuyển đến vị trí điểm \(B\left( {15;20} \right)\), tàu hai di chuyển đến vị trí điểm \(C\left( {30; - 40} \right)\) (đơn vị trục tọa độ là km, kết quả làm tròn đến hàng phần trăm). Khoảng cách giữa hai tàu sau 2 giờ là bao nhiêu km? (kết quả làm tròn đến hàng phần trăm).
Trong mặt phẳng gắn hệ trục tọa độ \(Oxy\), hai tàu chuyển động đều, cùng xuất phát từ điểm \(O\). Sau 2 giờ, tàu một di chuyển đến vị trí điểm \(B\left( {15;20} \right)\), tàu hai di chuyển đến vị trí điểm \(C\left( {30; - 40} \right)\) (đơn vị trục tọa độ là km, kết quả làm tròn đến hàng phần trăm). Khoảng cách giữa hai tàu sau 2 giờ là bao nhiêu km? (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {BC} = \left( {15; - 60} \right)\).
Khoảng cách giữa hai tàu sau 2 giờ là \(BC = \sqrt {{{15}^2} + {{\left( { - 60} \right)}^2}} \approx 61,85\) (km).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 57
Đường tròn \(\left( C \right)\) có tâm \(I\left( {0;0} \right),R = 10\).
Phương trình tiếp tuyến tại \(M\) nhận \(\overrightarrow {IM} = \left( {8;6} \right)\) làm vectơ pháp tuyến có phương trình là:
\(8\left( {x - 8} \right) + 6\left( {y - 6} \right) = 0\)\( \Leftrightarrow 8x + 6y - 100 = 0\)\( \Leftrightarrow 4x + 3y - 50 = 0\).
Suy ra \(a = 4;b = 3;c = 50\). Suy ra \(a + b + c = 57\).
Lời giải
+ Ta có: \(\Delta \cap {d_1} = A \Rightarrow A \in {d_1} \Rightarrow A\left( { - 1 - 2a;a} \right)\).
\(\Delta \cap {d_2} = B \Rightarrow B \in {d_2} \Rightarrow B\left( {b; - 2 - 2b} \right)\).
+ Suy ra\(\overrightarrow {MA} = ( - 2a;a - 2);\overrightarrow {MB} = (b + 1; - 2b - 4)\).
+ đường thẳng \(\Delta \)qua \(M( - 1;2)\)và cắt \({d_1},{d_2}\) lần lượt tại \(A,B\) nên\(M,A,B\) thẳng hàng.
Lại có \(MA = 2MB\)suy ra\[\left[ \begin{array}{l}\overrightarrow {MA} = 2\overrightarrow {MB} \\\overrightarrow {MA} = - 2\overrightarrow {MB} \end{array} \right.\].
+ \[\overrightarrow {MA} = 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l} - 2a = 2(b + 1)\\a - 2 = 2( - 2b - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{2}{3}\\b = - \frac{5}{3}\end{array} \right.\] .
Suy ra \(A\left( { - \frac{7}{3};\frac{2}{3}} \right);B\left( { - \frac{5}{3};\frac{4}{3}} \right)\). Suy ra phương trình đường thẳng \[\Delta :x - y + 3 = 0\] .
+ \[\overrightarrow {MA} = - 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l} - 2a = - 2(b + 1)\\a - 2 = - 2( - 2b - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = - 3\end{array} \right.\] .
Suy ra \(A\left( {3; - 2} \right);B\left( { - 3;4} \right)\). Suy ra phương trình đường thẳng \[\Delta :x + y - 1 = 0\] .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.