Câu hỏi:
10/02/2025 10,156
Một vật chuyển động tròn đều chịu tác động của lực hướng tâm, quỹ đạo chuyển động của vật trong mặt phẳng tọa độ \(Oxy\) là đường tròn có phương trình \({x^2} + {y^2} = 100\). Vật chuyển động đến điểm \(M\left( {8;6} \right)\) thì bị bay ra ngoài. Trong những giây đầu tiên sau khi vật bay ra ngoài, vật chuyển động trên đường thẳng là tiếp tuyến của đường tròn. Biết phương trình tiếp tuyến đó có dạng \(ax + by - c = 0\) với \(a,b,c\) là các số nguyên dương và \(a,b\) nguyên tố cùng nhau. Giá trị của \(a + b + c\) bằng bao nhiêu?
Một vật chuyển động tròn đều chịu tác động của lực hướng tâm, quỹ đạo chuyển động của vật trong mặt phẳng tọa độ \(Oxy\) là đường tròn có phương trình \({x^2} + {y^2} = 100\). Vật chuyển động đến điểm \(M\left( {8;6} \right)\) thì bị bay ra ngoài. Trong những giây đầu tiên sau khi vật bay ra ngoài, vật chuyển động trên đường thẳng là tiếp tuyến của đường tròn. Biết phương trình tiếp tuyến đó có dạng \(ax + by - c = 0\) với \(a,b,c\) là các số nguyên dương và \(a,b\) nguyên tố cùng nhau. Giá trị của \(a + b + c\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Trả lời: 57
Đường tròn \(\left( C \right)\) có tâm \(I\left( {0;0} \right),R = 10\).
Phương trình tiếp tuyến tại \(M\) nhận \(\overrightarrow {IM} = \left( {8;6} \right)\) làm vectơ pháp tuyến có phương trình là:
\(8\left( {x - 8} \right) + 6\left( {y - 6} \right) = 0\)\( \Leftrightarrow 8x + 6y - 100 = 0\)\( \Leftrightarrow 4x + 3y - 50 = 0\).
Suy ra \(a = 4;b = 3;c = 50\). Suy ra \(a + b + c = 57\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+ Ta có: \(\Delta \cap {d_1} = A \Rightarrow A \in {d_1} \Rightarrow A\left( { - 1 - 2a;a} \right)\).
\(\Delta \cap {d_2} = B \Rightarrow B \in {d_2} \Rightarrow B\left( {b; - 2 - 2b} \right)\).
+ Suy ra\(\overrightarrow {MA} = ( - 2a;a - 2);\overrightarrow {MB} = (b + 1; - 2b - 4)\).
+ đường thẳng \(\Delta \)qua \(M( - 1;2)\)và cắt \({d_1},{d_2}\) lần lượt tại \(A,B\) nên\(M,A,B\) thẳng hàng.
Lại có \(MA = 2MB\)suy ra\[\left[ \begin{array}{l}\overrightarrow {MA} = 2\overrightarrow {MB} \\\overrightarrow {MA} = - 2\overrightarrow {MB} \end{array} \right.\].
+ \[\overrightarrow {MA} = 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l} - 2a = 2(b + 1)\\a - 2 = 2( - 2b - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{2}{3}\\b = - \frac{5}{3}\end{array} \right.\] .
Suy ra \(A\left( { - \frac{7}{3};\frac{2}{3}} \right);B\left( { - \frac{5}{3};\frac{4}{3}} \right)\). Suy ra phương trình đường thẳng \[\Delta :x - y + 3 = 0\] .
+ \[\overrightarrow {MA} = - 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l} - 2a = - 2(b + 1)\\a - 2 = - 2( - 2b - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = - 3\end{array} \right.\] .
Suy ra \(A\left( {3; - 2} \right);B\left( { - 3;4} \right)\). Suy ra phương trình đường thẳng \[\Delta :x + y - 1 = 0\] .
Lời giải
Trả lời: 58
Gọi \(x\) là số lượng khách tính từ người thứ 51 trở lên của nhóm (điều kiện \(x \in \mathbb{N}*\)).
Khi đó số lượng khách tham quan là \(50 + x\).
Thêm \(x\) người thì giá vé sẽ giảm \(5000x\) (đồng).
Khi đó giá vé một người phải trả là \(300000 - 5000x\).
Tổng chi phí của đoàn khách tham quan là \(\left( {50 + x} \right)\left( {300000 - 5000x} \right)\) đồng.
Để công ty không bị lỗ thì \(\left( {50 + x} \right)\left( {300000 - 5000x} \right) \ge 15080000\)
\( \Leftrightarrow - 5000{x^2} + 50000x - 80000 \ge 0\)\( \Leftrightarrow 2 \le x \le 8\).
Do đó số người của nhóm khách nhiều nhất là 58 người thì công ty sẽ không bị lỗ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.