Câu hỏi:

14/02/2025 411

Một xe khách đi từ \(A\) đến \(B\) với vận tốc \(20{\rm{ km/h}}\). Sau \(3\) giờ thì tại A có một xe con đuổi theo với vận tốc \(50{\rm{ km/h}}\). Gọi \(x\) (giờ) là thời gian từ lúc xe con đi tới đuổi kịp xe khách (\(x > 0\)).

 a) Thời gian xe khách đi tới lúc gặp xe con là \(x + 3\) (giờ).

 b) Quãng đường đi được của xe con là \(50\left( {x + 3} \right)\) (km).

 c) Phương trình mô tả bài toán trên là \(20x = 50\left( {x + 3} \right)\).

 d) Vậy sau \(3\) giờ thì xe con đuổi kịp xe khách.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là:                 a) Đ         b) S          c) S         d) S

Gọi \(x\) (giờ) là thời gian từ lúc xe con đi tới đuổi kịp xe khách (\(x > 0\)).

Thời gian xe khách đi tới lúc gặp xe con là \(x + 3\) (giờ).

Quãng đường đi được của xe con là \(50x\) (km).

Quãng đường đi được của xe khách là \(20\left( {x + 3} \right)\) (km).

Theo đề, ta có phương trình \(20\left( {x + 3} \right) = 50x\).

Giải phương trình, ta được:

\(20\left( {x + 3} \right) = 50x\)

\(20x + 60 = 50x\)

\(50x - 20x = 60\)

\(30x = 60\)

\(x = 2\) (thỏa mãn).

Vậy sau \(2\) giờ thì xe con đuổi kịp xe khách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (áo) là số áo dự định phải may của tổ đó \(\left( {x \in {\mathbb{N}^*}} \right)\).

Thời gian may dự định của tổ là \(\frac{x}{{50}}\) (ngày).

Thực tế số áo tổ đã may được là \(x + 20\) (áo).

Thời gian thực tế tổ may đã làm là \(\frac{{x + 20}}{{60}}\) (ngày).

Theo đề bài, ta có phương trình: \(\frac{x}{{50}} - \frac{{x + 20}}{{60}} = 1\).

Giải phương trình, ta có:

\(\frac{x}{{50}} - \frac{{x + 20}}{{60}} = 1\)

\(\frac{{6x}}{{300}} - \frac{{5\left( {x + 2} \right)}}{{300}} = 1\)

\(\frac{{6x - 5x - 100}}{{300}} = 1\)

\(\frac{{x - 100}}{{300}} = 1\)

\(x - 100 = 300\)

\(x = 400\) (thỏa mãn)

Vậy số lượng áo ban đầu tổ phải may là \(400\) chiếc.

Câu 2

Cho biểu thức \(A = \left( {\frac{{a + 2}}{{a + 1}} - \frac{{a - 2}}{{a - 1}}} \right).\frac{{a + 1}}{a}\)\(B = \frac{3}{{{a^2} - 1}}\) với \(a \ne 0;a \ne 1;a \ne - 1\). Tìm giá trị của \(a\) để \(A = 2B\).

Lời giải

Đáp án: \(a = \frac{1}{2}\)

Với \(a \ne 0;a \ne 1;a \ne - 1\), ta có:

\(A = \left( {\frac{{a + 2}}{{a + 1}} - \frac{{a - 2}}{{a - 1}}} \right).\frac{{a + 1}}{a}\)

\(A = \left[ {\frac{{\left( {a + 2} \right)\left( {a - 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} - \frac{{\left( {a - 2} \right)\left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}}} \right].\frac{{a + 1}}{a}\)

\(A = \frac{{\left( {a + 2} \right)\left( {a - 1} \right) - \left( {a - 2} \right)\left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}}.\frac{{a + 1}}{a}\)

\(A = \frac{{{a^2} + a - 2 - {a^2} + a + 2}}{{\left( {a - 1} \right)\left( {a + 1} \right)}}.\frac{{a + 1}}{a}\)

\(A = \frac{{2a}}{{\left( {a + 1} \right)\left( {a - 1} \right)}}.\frac{{a + 1}}{a} = \frac{2}{{a - 1}}\).

Để \(A = 2B\) thì \(\frac{2}{{a - 1}} = \frac{3}{{{a^2} - 1}}\) suy ra \(2\left( {{a^2} - 1} \right) = 3\left( {a - 1} \right)\)

Do đó, \(2\left( {a - 1} \right)\left( {a + 1} \right) - 3\left( {a - 1} \right) = 0\) hay \(\left( {a - 1} \right)\left( {2a + 2 - 3} \right) = 0\).

Suy ra \(\left( {a - 1} \right)\left( {2a - 1} \right) = 0\).

Suy ra \(a = 1\) (loại) hoặc \(a = \frac{1}{2}\) (thỏa mãn).

Vậy \(a = \frac{1}{2}\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP