Câu hỏi:

10/03/2025 1,219

Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị là parabol trong hình sau

Cho hàm số   y = a x 2 + b x + c   có đồ thị là parabol trong hình sau Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ, b) Đ, c) S, d) Đ

a) Số phần tử của không gian mẫu bằng \(C_{12}^5\).

b) Để lấy được 5 viên bi cùng màu thì 5 viên bi lấy được có màu xanh.

Do đó số phần tử của biến cố “5 viên bi lấy ra cùng màu” là \(C_6^5\).

c) Xác suất của biến cố “5 viên bi lấy ra không có bi vàng” là \(P = \frac{{C_{10}^5}}{{C_{12}^5}} = \frac{7}{{22}}\).

d) Xác suất của biến cố “5 viên bi lấy ra có ít nhất một bi vàng” là \(P = 1 - \frac{7}{{22}} = \frac{{15}}{{22}}\).

Lời giải

Hướng dẫn giải

Giả sử đường tròn tác động \(\left( C \right)\) có phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(I\left( {a;b} \right)\).

Vì \(\left( C \right)\) đi qua hai điểm \(K\left( { - 3;10} \right)\) và \(N\left( {8;0} \right)\) nên ta có \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right.\) (1).

Lại có \(IG = 4\sqrt {10} \) nên \({\left( {9 - a} \right)^2} + {\left( { - \frac{{17}}{4} - b} \right)^2} = 160\) (2).

Từ \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{c + 64}}{{16}}\\b = \frac{{11c}}{{160}} + \frac{{133}}{{20}}\end{array} \right.\) thay vào (2), ta được

\[{\left( {9 - \frac{{c + 64}}{{16}}} \right)^2} + {\left( { - \frac{{17}}{4} - \frac{{11c}}{{160}} - \frac{{133}}{{20}}} \right)^2} = 160\]\( \Leftrightarrow {\left( {5 - \frac{c}{{16}}} \right)^2} + {\left( {\frac{{109}}{{10}} + \frac{{11c}}{{160}}} \right)^2} = 160\)

\( \Leftrightarrow 25 - \frac{{10}}{{16}}c + \frac{{{c^2}}}{{256}} + \frac{{11881}}{{100}} + \frac{{1199}}{{800}}c + \frac{{121}}{{25600}}{c^2} = 160\)\( \Leftrightarrow \frac{{221}}{{25600}}{c^2} + \frac{{699}}{{800}}c - \frac{{1619}}{{100}} = 0\)

\( \Leftrightarrow c = 16\) hoặc \(c = \frac{{ - 25904}}{{221}}\).

Vì \(I\) có hoành độ dương nên \(c = 16\). Suy ra \(\left\{ \begin{array}{l}a = 5\\b = \frac{{31}}{4}\end{array} \right.\).

Do đó bán kính của đường tròn \(\left( C \right)\) là \(R = \sqrt {{5^2} + {{\left( {\frac{{31}}{4}} \right)}^2} - 16} \approx 8,31\) km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP