Câu hỏi:
10/03/2025 957
PHẦN II. TỰ LUẬN
Động đất hay địa chấn là sự rung chuyển trên bề mặt Trái Đất do kết quả của sự giải phóng năng lượng bất ngờ ở lớp vỏ Trái Đất và phái sinh ra sóng địa chấn (theo Wikipedia).
Ngày 6/2/2023, một trận động đất cường độ 7,8 độ richter có tâm chấn tại Thổ Nhĩ Kì được mô tả bởi tâm \(I\) của đường tròn tác động \(\left( C \right)\) trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tọa độ là km). Biết rằng đường tròn tác động \(\left( C \right)\) đi qua hai thành phố Kahramamaras và Nurdagi được mô tả bởi hai điểm \(K\left( { - 3;10} \right)\) và \(N\left( {8;0} \right)\); tâm chấn \(I\) có hoành độ dương và cách thành phố Aleppo của Syria được mô tả bởi điểm \(G\left( {9; - \frac{{17}}{4}} \right)\) là \(4\sqrt {10} \) km. Tìm bán kính (km) của đường tròn \(\left( C \right)\) (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Hướng dẫn giải
Giả sử đường tròn tác động \(\left( C \right)\) có phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(I\left( {a;b} \right)\).
Vì \(\left( C \right)\) đi qua hai điểm \(K\left( { - 3;10} \right)\) và \(N\left( {8;0} \right)\) nên ta có \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right.\) (1).
Lại có \(IG = 4\sqrt {10} \) nên \({\left( {9 - a} \right)^2} + {\left( { - \frac{{17}}{4} - b} \right)^2} = 160\) (2).
Từ \(\left\{ \begin{array}{l}6a - 20b + c = - 109\\ - 16a + c = - 64\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{c + 64}}{{16}}\\b = \frac{{11c}}{{160}} + \frac{{133}}{{20}}\end{array} \right.\) thay vào (2), ta được
\[{\left( {9 - \frac{{c + 64}}{{16}}} \right)^2} + {\left( { - \frac{{17}}{4} - \frac{{11c}}{{160}} - \frac{{133}}{{20}}} \right)^2} = 160\]\( \Leftrightarrow {\left( {5 - \frac{c}{{16}}} \right)^2} + {\left( {\frac{{109}}{{10}} + \frac{{11c}}{{160}}} \right)^2} = 160\)
\( \Leftrightarrow 25 - \frac{{10}}{{16}}c + \frac{{{c^2}}}{{256}} + \frac{{11881}}{{100}} + \frac{{1199}}{{800}}c + \frac{{121}}{{25600}}{c^2} = 160\)\( \Leftrightarrow \frac{{221}}{{25600}}{c^2} + \frac{{699}}{{800}}c - \frac{{1619}}{{100}} = 0\)
\( \Leftrightarrow c = 16\) hoặc \(c = \frac{{ - 25904}}{{221}}\).
Vì \(I\) có hoành độ dương nên \(c = 16\). Suy ra \(\left\{ \begin{array}{l}a = 5\\b = \frac{{31}}{4}\end{array} \right.\).
Do đó bán kính của đường tròn \(\left( C \right)\) là \(R = \sqrt {{5^2} + {{\left( {\frac{{31}}{4}} \right)}^2} - 16} \approx 8,31\) km.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Đ, b) Đ, c) S, d) Đ
a) Số phần tử của không gian mẫu bằng \(C_{12}^5\).
b) Để lấy được 5 viên bi cùng màu thì 5 viên bi lấy được có màu xanh.
Do đó số phần tử của biến cố “5 viên bi lấy ra cùng màu” là \(C_6^5\).
c) Xác suất của biến cố “5 viên bi lấy ra không có bi vàng” là \(P = \frac{{C_{10}^5}}{{C_{12}^5}} = \frac{7}{{22}}\).
d) Xác suất của biến cố “5 viên bi lấy ra có ít nhất một bi vàng” là \(P = 1 - \frac{7}{{22}} = \frac{{15}}{{22}}\).
Lời giải
Đáp án đúng là: A
Dựa vào đồ thị hàm số ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.