Câu hỏi:

18/04/2025 70 Lưu

Cho dạng toàn phương Q: R3 R có ma trận trong cơ sở chính tắc\[{\rm{A}} = \left( {\begin{array}{*{20}{c}}{17}&2&{ - 2}\\{ - 2}&{14}&{ - 4}\\{ - 2}&{ - 4}&{14}\end{array}} \right)\]. Tìm một cơ sở\[\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\]của R3 sao cho biểu thức toạ độ của Q trong cơ sở này có dạng chính tắc\[{\rm{(x, y, z) = X}}{{\rm{v}}_{\rm{1}}}{\rm{ + Y}}{{\rm{v}}_{\rm{2}}}{\rm{ + Z}}{{\rm{v}}_{\rm{3}}}{\rm{; Q(x, y, z) = \alpha }}{{\rm{x}}^{\rm{2}}}{\rm{ + \beta }}{{\rm{y}}^{\rm{2}}}{\rm{ + \gamma }}{{\rm{z}}^{\rm{2}}}\]

A. \[{{\rm{v}}_1} = \left( {\frac{1}{3},\frac{2}{3},\frac{2}{3}} \right),{{\rm{v}}_2} = \left( {0,\frac{1}{{\sqrt 2 }},\frac{{ - 1}}{{\sqrt 2 }}} \right),{{\rm{v}}_3} = \left( {\frac{{ - 4}}{{\sqrt {18} }},\frac{1}{{\sqrt {18} }},\frac{1}{{\sqrt {18} }}} \right);{\rm{\alpha }} = 9,{\rm{\beta }} = 18,{\rm{\gamma }} = 18\]

B. \[{{\rm{v}}_1} = \left( {\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }}} \right),{{\rm{v}}_2} = \left( {\frac{1}{{\sqrt 2 }},\frac{{ - 1}}{{\sqrt 2 }},0} \right),{{\rm{v}}_3} = \left( {\frac{1}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }},\frac{{ - 2}}{{\sqrt 6 }}} \right);{\rm{\alpha }} = 5,{\rm{\beta }} = 10,{\rm{\gamma }} = 10\]

C. \[\begin{array}{*{20}{l}}{{{\rm{v}}_1} = \left( {\frac{2}{3},\frac{2}{3},\frac{{ - 1}}{3}} \right),{{\rm{v}}_2} = \left( {\frac{1}{3},\frac{{ - 2}}{3},\frac{2}{3}} \right),{{\rm{v}}_3} = \left( {\frac{2}{3},\frac{1}{3},\frac{2}{3}} \right);{\rm{\alpha }} = 3,{\rm{\beta }} = 5,{\rm{\gamma }} = - 1}\\{{\rm{p}} = 1,{\rm{q}} = 2}\\{\left( {\begin{array}{*{20}{c}}2&{ - 6}\\0&1\end{array}} \right)}\end{array}\]

D. \[{{\rm{v}}_1} = \left( {\frac{2}{3},\frac{2}{3},\frac{{ - 1}}{3}} \right),{{\rm{v}}_2} = \left( {\frac{1}{3},\frac{{ - 2}}{3},\frac{2}{3}} \right),{{\rm{v}}_3} = \left( {\frac{2}{3},\frac{1}{3},\frac{2}{3}} \right);{\rm{\alpha }} = 1,{\rm{\beta }} = 1,{\rm{\gamma }} = 2\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{{\rm{v}}_2} = ( - 17,0,5,0,1),{{\rm{v}}_3} = (13,0, - 4,1,0)} \right\}\]

B. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{{\rm{v}}_2} = ( - 17,0,5,0,1)} \right\}\]

C. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{v_2} = (7,0,5,0,1),{{\rm{v}}_2} = (13,0, - 4,1,0)} \right\}\]

D. \[\left\{ {{{\rm{v}}_1} = (2, - 1,0,0,0),{v_2} = ( - 17,0,5,0,1),{{\rm{v}}_2} = (15,1, - 5,0, - 1)} \right\}\]

Lời giải

Chọn đáp án A

Câu 2

A. \[{{\rm{v}}_1} = (3,1,0, - 4),{{\rm{v}}_2} = (1, - 3,5,4)\]

B. \[{{\rm{v}}_1} = (4,1,0,6),{{\rm{v}}_2} = (2, - 1,3,0),{{\rm{v}}_3} = (1, - 1,3,2)\]

C. \[{{\rm{v}}_1} = (1,2,0),{{\rm{v}}_2} = (4,4,0,1)\]

D. \[{{\rm{v}}_1} = (2,4,2,0),{{\rm{v}}_2} = (5,6,1,2)\]

Lời giải

Chọn đáp án C

Câu 3

A. Hệ vô nghiệm

B. \(\left\{ {\begin{array}{*{20}{c}}{m \ne 0,}\\{m = 0}\end{array}} \right. \Rightarrow {x_1} = \frac{{ - 5{x_3} - 13{x_4} - 3}}{2};{x_1} = \frac{{ - 7{x_3} - 19{x_4} - 7}}{2}\)

C. \(\left\{ {\begin{array}{*{20}{c}}{m = 9,}\\{m \ne 9}\end{array}} \right. \Rightarrow {x_1} = \frac{{2{x_1} + 11{x_2} - 3}}{2};{x_1} = \frac{{ - 5{x_1} + 21{x_2} - 7}}{2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}}{\rm{ + }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot \cap {{\rm{W}}_{\rm{2}}}^ \bot \]

B. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}} \cap {\rm{ }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot + {{\rm{W}}_{\rm{2}}}^ \bot \]

C. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}} \cap {\rm{ }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot \cup {{\rm{W}}_{\rm{2}}}^ \bot \]

D. \[{{\rm{(}}{{\rm{W}}_{\rm{1}}} \subset {\rm{ }}{{\rm{W}}_{\rm{2}}}{\rm{)}}^ \bot }{\rm{ = }}{{\rm{W}}_{\rm{1}}}^ \bot \supset {{\rm{W}}_{\rm{2}}}^ \bot \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP