Câu hỏi:

21/04/2025 140

Câu 1-3. (1,5 điểm) Cho biểu thức K=x+1x1x1x+1+x24x1x21x+3x .

a) Tìm điều kiện xác định của biểu thức \(K.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].

Vậy điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\].

Câu hỏi cùng đoạn

Câu 2:

b) Rút gọn biểu thức \(K.\)

Xem lời giải

verified Lời giải của GV VietJack

b) Với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\], ta có:

\[K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 3}}{x}\]

\[ = \left[ {\frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{{{x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}} \right] \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1 + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{4x + {x^2} - 4x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x}\]

\[ = \frac{{{x^2} - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \cdot \frac{{x + 3}}{x} = \frac{{x + 3}}{x}.\]

Vậy với \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] thì \(K = \frac{{x + 3}}{x}.\)

Câu 3:

c) Tìm giá trị nguyên của \(x\) để biểu thức \(K\) nhận giá trị nguyên.

Xem lời giải

verified Lời giải của GV VietJack

c) Ta có \(K = \frac{{x + 3}}{x} = 1 + \frac{3}{x}.\)

Để biểu thức \(K\) nhận giá trị nguyên thì \(\frac{3}{x} \in \mathbb{Z}\).

Khi đó, \(x \in \)Ư\[\left( 3 \right) = \left\{ { - 1\,;\,\,\,1\,;\,\, - 3\,;\,\,3} \right\}\]\[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\] nên \(x \in \left\{ { - 3\,;\,\,3} \right\}\).

Vậy với \(x \in \left\{ { - 3\,;\,\,3} \right\}\) thì biểu thức \(K\) nhận giá trị nguyên.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a (ảnh 1)

a) Xét \[\Delta ABD\]\[\Delta ACE\] có:

\[\widehat {BAC}\] chung, \[\widehat {ADB} = \widehat {AEC} = 90^\circ \] (gt)

Suy ra ΔABD  ΔACE (g.g)

Lời giải

Tập hợp \(K\) gồm các kết quả xảy ra đối với thành viên được chọn là :

K = {Kon Tum; Bình Phước; Tây Ninh; Bình Dương; Gia Lai; Bà Rịa – Vũng Tàu; Đồng Nai; Đăk Lăk; Đăk Nông; Lâm Đồng; Thành phố Hồ Chí Minh}.

Số phần tử của tập hợp \(K\) là 11.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay