Câu hỏi:

21/04/2025 123

Câu 4-5. (2,5 điểm)

Hàm chi phí đơn giản nhất là hàm chi phí bậc nhất \(y = ax + b,\) trong đó \(b\) biểu thị chi phí cố định của hoạt động kinh doanh và hệ số \(a\) biểu thị chi phí của mỗi mặt hàng được sản xuất. Giả sử rằng một xưởng sản xuất xe đạp có chi phí cố định hằng ngày là 36 triệu đồng và mỗi chiếc xe đạp có chi phí sản xuất là \(1,8\) triệu đồng.

a) Viết công thức của hàm số bậc nhất biểu thị chi phí \(y\) (triệu đồng) để sản xuất \(x\) (xe đạp) trong một ngày.

b) Có thể sản xuất bao nhiêu chiếc xe đạp trong ngày, nếu chi phí trong ngày đó là 72 triệu đồng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Công thức của hàm số bậc nhất biểu thị chi phí \(y\) (triệu đồng) để sản xuất \(x\) (xe đạp) trong một ngày là:

\(y = 1,8x + 36\) (triệu đồng).

 b) Do chi phí trong ngày đó là 72 triệu đồng nên \(y = 72\) (triệu đồng).

Thay \(y = 72\) vào công thức \(y = 1,8x + 36\) ta có:

\(1,8x + 36 = 72\)

\(1,8x = 36\)

\(x = 20\).

Vậy với chi phí là 72 triệu đồng thì trong ngày đó có thể sản xuất được 20 chiếc xe đạp.

Câu hỏi cùng đoạn

Câu 2:

Tại điểm tiêm phòng Covid-19 trường A, một bàn tiêm dự định tiêm một số mũi tiêm vaccine phòng Covid-19 cho người dân trong 20 ngày. Do yêu cầu cấp bách của việc phòng bệnh, bàn tiêm đã tăng năng suất thêm 20% nên sau 18 ngày không những đã tiêm xong số mũi tiêm dự định mà còn tiêm thêm được 24 mũi tiêm nữa. Tính số mũi tiêm phòng Covid-19 mà một bàn tiêm dự định tiêm.

Xem lời giải

verified Lời giải của GV VietJack

Gọi \[x\] (mũi tiêm) là số mũi tiêm phòng Covid-19 mà một bàn tiêm dự định tiêm \(\left( {x \in {\mathbb{N}^*}} \right)\).
Năng suất tiêm dự định của bàn tiêm là \(\frac{x}{{20}}\).

Năng suất tiêm thực tế của bàn tiêm là \(\frac{x}{{20}}\left( {100\% + 20\% } \right) = 0,06x\).

Theo đề bài, ta có phương trình: \(18 \cdot 0,06x - x = 24\)

\(1,08x - x = 24\)

\(0,08x = 24\)

\(x = 300\) (TMĐK)

Vậy một bàn dự định tiêm 300 mũi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].

Vậy điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\].

Lời giải

Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:

\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];

\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];

\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].

Và ngược lại đổi vị trí hai số trong các cặp số trên.

Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].

Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.

Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP