Câu hỏi:

19/08/2025 178 Lưu

(0,5 điểm) Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:

\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];

\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];

\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].

Và ngược lại đổi vị trí hai số trong các cặp số trên.

Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].

Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.

Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].

Vậy điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\].

Lời giải

Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:

\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).

Suy ra  \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].

\(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).

Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP