Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right),\] vẽ các đường cao \[BD\] và \[CE.\]
a) Chứng minh:
Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right),\] vẽ các đường cao \[BD\] và \[CE.\]
a) Chứng minh:
Quảng cáo
Trả lời:

a) Xét \[\Delta ABD\] và \[\Delta ACE\] có:
\[\widehat {BAC}\] chung, \[\widehat {ADB} = \widehat {AEC} = 90^\circ \] (gt)
Suy ra (g.g)Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh: \(\widehat {ABC} + \widehat {EDC} = 180^\circ \).
b) Chứng minh: \(\widehat {ABC} + \widehat {EDC} = 180^\circ \).
Vì (câu a) nên \[\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\] (các cặp cạnh tương ứng tỉ lệ).
\[\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\] (chứng minh trên); \[\widehat {BAC}\] chung.
Do đó (c.g.c)
Suy ra \[\widehat {ADE} = \widehat {ABC}\] (hai góc tương ứng)
Mặc khác \[\widehat {ADE} + \widehat {EDC} = 180^\circ \] (hai góc kề bù)
Do đó \[\widehat {ADE} + \widehat {EDC} = \widehat {ABC} + \widehat {EDC} = 180^\circ \].
Vậy \[\widehat {ABC} + \widehat {EDC} = 180^\circ .\]
Câu 3:
c) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của đoạn thẳng \[BD\] và \[CE.\] Vẽ \[AK\] là phân giác của \[\widehat {MAN}\,\,(K \in BC).\] Chứng minh \[KB \cdot AC = KC \cdot AB.\]
c) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của đoạn thẳng \[BD\] và \[CE.\] Vẽ \[AK\] là phân giác của \[\widehat {MAN}\,\,(K \in BC).\] Chứng minh \[KB \cdot AC = KC \cdot AB.\]
c) Vì (câu a) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{CE}}\) (tỉ số đồng dạng).
Mà \[M,{\rm{ }}N\] lần lượt là trung điểm của đoạn thẳng \[BD\] và \[CE\] nên \[BD = 2BM\] và \[CE = 2CN.\]
Suy ra \(\frac{{AB}}{{AC}} = \frac{{BD}}{{CE}} = \frac{{2BM}}{{2CN}} = \frac{{BM}}{{CN}}.\)
Xét \[\Delta ABM\] và \[\Delta ACN\] có:
\(\frac{{AB}}{{AC}} = \frac{{BM}}{{CN}}\) (chứng minh trên)
\(\widehat {ABM} = \widehat {ACN}\) (do cùng phụ với \(\widehat {BAC}\))
Do đó ( c.g.c)Suy ra \[\widehat {BAM} = \widehat {CAN}\] (hai góc tương ứng)
Lại có AK là tia phân giác của \(\widehat {MAN}\) (giả thiết)
Suy ra \[\widehat {MAK} = \widehat {NAK}\] (tính chất tia phân giác của một góc)
Do đó \[\widehat {BAM} + \widehat {MAK} = \widehat {CAN} + \widehat {NAK}\] hay \(\widehat {BAK} = \widehat {KAC}\)
Nên \[AK\] là tia phân giác của \(\widehat {BAC}\).
Theo tính chất tia phân giác của tam giác ta có: \(\frac{{AB}}{{AC}} = \frac{{KB}}{{KC}}\).
Do đó \[KB \cdot AC = KC \cdot AB\] (điều phải chứng minh).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:
\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).
Suy ra \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].
Vì \(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).
Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.
Lời giải
a) Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].
Vậy điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
