Câu hỏi:

21/04/2025 23

Câu 9-11. (2,5 điểm) Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB < AC} \right),\] vẽ các đường cao \[BD\]\[CE.\]

a) Chứng minh: ΔABD  ΔACE

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a (ảnh 1)

a) Xét \[\Delta ABD\]\[\Delta ACE\] có:

\[\widehat {BAC}\] chung, \[\widehat {ADB} = \widehat {AEC} = 90^\circ \] (gt)

Suy ra ΔABD  ΔACE (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh: \(\widehat {ABC} + \widehat {EDC} = 180^\circ \).

Xem lời giải

verified Lời giải của GV VietJack

ΔABD  ΔACE  (câu a) nên \[\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\] (các cặp cạnh tương ứng tỉ lệ).

Xét \[\Delta AED\]\[\Delta ACB\]

\[\frac{{AD}}{{AE}} = \frac{{AB}}{{AC}}\] (chứng minh trên); \[\widehat {BAC}\] chung.

Do đó  (c.g.c)

Suy ra \[\widehat {ADE} = \widehat {ABC}\] (hai góc tương ứng)

Mặc khác \[\widehat {ADE} + \widehat {EDC} = 180^\circ \] (hai góc kề bù)

Do đó \[\widehat {ADE} + \widehat {EDC} = \widehat {ABC} + \widehat {EDC} = 180^\circ \].

Vậy \[\widehat {ABC} + \widehat {EDC} = 180^\circ .\]

Câu 3:

c) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của đoạn thẳng \[BD\]\[CE.\] Vẽ \[AK\] là phân giác của \[\widehat {MAN}\,\,(K \in BC).\] Chứng minh \[KB \cdot AC = KC \cdot AB.\]

Xem lời giải

verified Lời giải của GV VietJack

c) Vì ΔABD  ΔACE (câu a) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{CE}}\) (tỉ số đồng dạng).

\[M,{\rm{ }}N\] lần lượt là trung điểm của đoạn thẳng \[BD\]\[CE\] nên \[BD = 2BM\]\[CE = 2CN.\]

Suy ra \(\frac{{AB}}{{AC}} = \frac{{BD}}{{CE}} = \frac{{2BM}}{{2CN}} = \frac{{BM}}{{CN}}.\)

Xét \[\Delta ABM\]\[\Delta ACN\] có:

\(\frac{{AB}}{{AC}} = \frac{{BM}}{{CN}}\) (chứng minh trên)

\(\widehat {ABM} = \widehat {ACN}\) (do cùng phụ với \(\widehat {BAC}\))

Do đó ΔABM  ΔACN ( c.g.c)

Suy ra \[\widehat {BAM} = \widehat {CAN}\] (hai góc tương ứng)

Lại có AK là tia phân giác của \(\widehat {MAN}\) (giả thiết)

Suy ra \[\widehat {MAK} = \widehat {NAK}\] (tính chất tia phân giác của một góc)

Do đó \[\widehat {BAM} + \widehat {MAK} = \widehat {CAN} + \widehat {NAK}\] hay \(\widehat {BAK} = \widehat {KAC}\)

Nên \[AK\] là tia phân giác của \(\widehat {BAC}\).

Theo tính chất tia phân giác của tam giác ta có: \(\frac{{AB}}{{AC}} = \frac{{KB}}{{KC}}\).

Do đó \[KB \cdot AC = KC \cdot AB\] (điều phải chứng minh).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Tìm điều kiện xác định của biểu thức \(K.\)

Xem đáp án » 21/04/2025 33

Câu 2:

Hàm chi phí đơn giản nhất là hàm chi phí bậc nhất \(y = ax + b,\) trong đó \(b\) biểu thị chi phí cố định của hoạt động kinh doanh và hệ số \(a\) biểu thị chi phí của mỗi mặt hàng được sản xuất. Giả sử rằng một xưởng sản xuất xe đạp có chi phí cố định hằng ngày là 36 triệu đồng và mỗi chiếc xe đạp có chi phí sản xuất là \(1,8\) triệu đồng.

a) Viết công thức của hàm số bậc nhất biểu thị chi phí \(y\) (triệu đồng) để sản xuất \(x\) (xe đạp) trong một ngày.

b) Có thể sản xuất bao nhiêu chiếc xe đạp trong ngày, nếu chi phí trong ngày đó là 72 triệu đồng?

Xem đáp án » 21/04/2025 18

Câu 3:

a) Gọi \(K\) là tập hợp gồm các kết quả có thể xảy ra đối với thành viên được chọn. Tính số phần tử của tập hợp \(K\).

Xem đáp án » 21/04/2025 17

Câu 4:

Để xác định chiếc điện thoại là bao nhiêu inch, các nhà sản xuất đã dựa vào độ dài đường chéo của màn hình điện thoại, biết \(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\), điện thoại có chiều rộng là \[7\,\,{\rm{cm;}}\] chiều dài là \[15,5{\rm{ cm}}.\] Hỏi chiếc điện thoại theo hình vẽ là bao nhiêu inch? (Làm tròn kết quả đến hàng đơn vị).
Hỏi chiếc điện thoại theo hình vẽ là bao nhiêu inch? (ảnh 1)

Xem đáp án » 21/04/2025 9

Câu 5:

(0,5 điểm) Trên 6 chiếc thẻ, mỗi thẻ đánh một trong các số trong tập hợp \[\left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\] (không có có thẻ nào có số trùng nhau). Hai thẻ được chọn ngẫu nhiên từ tập hợp trên và đem nhân với nhau. Hỏi xác suất để tích hai số trên hai tấm bằng 0 là bao nhiêu?

Xem đáp án » 21/04/2025 9

Câu 6:

b) Rút gọn biểu thức \(K.\)

Xem đáp án » 21/04/2025 0
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua