Câu hỏi:
21/04/2025 113
Câu 12-13. (1,5 điểm)
Để xác định chiếc điện thoại là bao nhiêu inch, các nhà sản xuất đã dựa vào độ dài đường chéo của màn hình điện thoại, biết \(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\), điện thoại có chiều rộng là \[7\,\,{\rm{cm;}}\] chiều dài là \[15,5{\rm{ cm}}.\] Hỏi chiếc điện thoại theo hình vẽ là bao nhiêu inch? (Làm tròn kết quả đến hàng đơn vị).
Câu 12-13. (1,5 điểm)

Quảng cáo
Trả lời:
Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[A\], ta có:
\(B{C^2} = A{C^2} + A{B^2} = {\left( {15,5} \right)^2} + {7^2} = 289,25\).
Suy ra \[BC = \sqrt {289,25} \approx 17\,\,{\rm{(cm)}}\].
Vì \(1\,\,{\rm{inch}} \approx 2,54\,\,{\rm{cm}}\) nên chiếc điện thoại theo hình vẽ là: \(\frac{{17}}{{2,54}} \approx 7\,\,({\rm{inch)}}\).
Vậy chiếc điện thoại theo hình vẽ khoảng 7 inch.
Câu hỏi cùng đoạn
Câu 2:
Tính diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa có kích thước như hình bên.

Tính diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa có kích thước như hình bên.
Lời giải của GV VietJack
Gấp miếng bìa ta được hình chóp tứ giác đều \(S.ABCD\) có kích thước như hình vẽ.
Khi đó đáy \(ABCD\) là hình vuông và các mặt bên là các tam giác cân.
Gọi \(M\) là trung điểm của \(BC.\)
Khi đó \(BM = \frac{1}{2}AB = \frac{1}{2} \cdot 10 = 5{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Tam giác \(SBC\) cân tại \(S\) có \(SM\) là đường trung tuyến đồng thời là đường cao nên \(SM \bot BC\) do đó \(\Delta SBM\) vuông tại \(M.\)
Áp dụng định lí Pythagore ta có \(S{B^2} = S{M^2} + B{M^2}\).
Suy ra \(S{M^2} = S{B^2} - B{M^2} = {13^2} - {5^2} = 144.\)
Do đó \(SM = 12{\rm{\;cm}}.\)
Diện tích của hình chóp tứ giác đều \(S.ABCD\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 10} \right) \cdot 12 = 240{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích xung quanh của hình chóp tứ giác đều được gấp từ miếng bìa trên là \(240{\rm{\;c}}{{\rm{m}}^2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện: \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\{x^2} - 1 \ne 0\\x \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\\left( {x + 1} \right)\left( {x - 1} \right) \ne 0\\x \ne 0\end{array} \right.\] nên \[\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\x \ne 0\end{array} \right.\] do đó \[\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\\x \ne 0\end{array} \right.\].
Vậy điều kiện xác định của biểu thức \(K\) là \[x \ne 1\,;\,\,x \ne - \,1;\,\,x \ne 0\].
Lời giải
Các trường hợp có thể xảy ra khi chọn hai tấm thẻ bất kì là:
\[\left\{ { - 2\,;\,\, - 1} \right\}\,;\,\,\left\{ { - 2\,;\,\,0} \right\}\,;\,\,\left\{ { - 2\,;\,\,3} \right\}\,;\,\,\left\{ { - 2\,;\,\,4} \right\};\left\{ { - 2;5} \right\}\];
\[\left\{ { - 1\,;\,\,0} \right\}\,;\,\,\left\{ { - 1\,;\,\,3} \right\}\,;\,\,\left\{ { - 1\,;\,\,4} \right\}\,;\,\,\left\{ { - 1\,;\,\,5} \right\}\];
\[\left\{ {0\,;\,\,3} \right\};\left\{ {0\,;\,\,4} \right\}\,;\,\,\left\{ {0\,;\,\,5} \right\}\]; \[\left\{ {3\,;\,\,4} \right\}\,;\,\,\left\{ {3\,;\,\,5} \right\}\,;\,\,\left\{ {4;5} \right\}\].
Và ngược lại đổi vị trí hai số trong các cặp số trên.
Số các kết quả xảy ra khi chọn hai tấm thẻ phân biệt từ tập hợp đã cho là \[15 \cdot 2 = 30\].
Khi tích của hai số đã chọn bằng 0 thì số hạng đầu tiên bằng 0 hoặc số hạng thứ 2 bằng 0, ta có 10 trường hợp như thế.
Vậy xác xuất cần tìm là \[\frac{{10}}{{30}} = \frac{1}{3}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.