Câu hỏi:

24/04/2025 96 Lưu

PHẦN 2. TOÁN HỌC

Cho \(\cos \alpha = \frac{3}{4}\) với \[0^\circ < \alpha < 90^\circ \]. Giá trị của biểu thức \(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}\) là:

A. \(\frac{{17}}{8}\). 
B. \(\frac{{25}}{{16}}\).    
C. \(\frac{{43}}{{16}}\).    
D. \(\frac{{27}}{8}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(A = \frac{{\tan \alpha + 3\cot \alpha }}{{\tan \alpha + \cot \alpha }}\)\( = \frac{{\tan \alpha + 3 \cdot \frac{1}{{\tan \alpha }}}}{{\tan \alpha + \frac{1}{{\tan \alpha }}}} = \frac{{{{\tan }^2}\alpha + 3}}{{{{\tan }^2}\alpha + 1}} = \frac{{\frac{1}{{{{\cos }^2}\alpha }} + 2}}{{\frac{1}{{{{\cos }^2}\alpha }}}} = 1 + 2{\cos ^2}\alpha \).

Suy ra \(A = 1 + 2 \cdot \frac{9}{{16}} = \frac{{17}}{8}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử gặp một người trong làng không mắc bệnh, xác suất để người đó là nữ chính là xác suất có điều kiện \(P\left( {\bar B|\bar A} \right)\).

Ta có \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,0047 = 0,9953\); \(P\left( {\bar A|\bar B} \right) = 1 - P\left( {A|\bar B} \right) = 1 - 0,0035 = 0,9965\).

Theo công thức Bayes: \(P\left( {\bar B\mid \bar A} \right) = \frac{{P\left( {\bar B} \right) \cdot P\left( {\bar A|\bar B} \right)}}{{P\left( {\bar A} \right)}} = \frac{{13}}{{25}} \cdot \frac{{0,9965}}{{0,9953}} \approx 0,5206 = 52,06\% \). Chọn A.

Câu 2

A. \(v\left( {{t_1}} \right) = \frac{1}{{90\,000\,000}}t_1^3 + \frac{1}{{500}}{t_1} + 1\,\,\,\left( {{\rm{m/s}}} \right)\).                           
B. \(v\left( {{t_1}} \right) = \frac{1}{{90\,000\,000}}t_1^3 + \frac{n}{{500}}{t_1} + 1\,\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\).    
C. \(v\left( {{t_1}} \right) = \frac{1}{{9\,000}}t_1^2 + \frac{n}{{100}}{t_1}\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\).    
D. \(v\left( {{t_1}} \right) = \frac{1}{{9\,000}}t_1^2 + \frac{n}{{100}}{t_1} + 1\,\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\).

Lời giải

Ta có vận tốc của tên lửa tầm trung là:

\(v\left( {{t_1}} \right) = \int {a\left( {{t_1}} \right)d{t_1}} = \int {\left( {\frac{1}{{4500}}{t_1} + \frac{n}{{100}}} \right)} \,{\rm{d}}{t_1} = \frac{1}{{9000}}t_1^2 + \frac{n}{{100}}{t_1} + C\).

Vì khi \({t_1} = 0\) thì \(v\left( {{t_1}} \right) = 0\) nên suy ra \(C = 0\).

Do đó \(v\left( {{t_1}} \right) = \frac{1}{{9000}}t_1^2 + \frac{n}{{100}}{t_1}\,\,\left( {{\rm{m/s}}} \right)\), \(n > 0\). Chọn C.

Câu 3

A. \(\alpha = \frac{\pi }{{22}}\).               
B. \(\alpha = - \frac{{2\pi }}{{45}}\).    
C. \(\alpha  =  - \frac{\pi }{{21}}\).                   
D. \(\alpha=- \frac{\pi }{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. The Importance of Preserving Traditional Forms of Media in Society.    
B. A Comprehensive History of the Evolution of Media.    
C. One of the Most Significant Developments in the History of Media.    
D. The Negative Impact of Digital Media on Modern Communication.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tự sự.                  
B. Miêu tả.               
C. Thuyết minh.              
D. Biểu cảm.            

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP