Câu hỏi:
06/05/2025 465Một vật đang chuyển động đều với vận tốc v0 =15 m/s thì tăng tốc với gia tốc a(t) = t2 + 4t (m/s2). Tính quãng đường vật đi được trong khoảng thời gian 3 giây từ lúc bắt đầu tăng tốc.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có \(v\left( t \right) = \int {\left( {{t^2} + 4t} \right)dt} = \frac{{{t^3}}}{3} + 2{t^2} + C\).
Vì v(0) = 15 nên C = 15.
Khi đó \[v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\].
Có \(s\left( t \right) = \int {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right)dt} = \frac{{{t^4}}}{{12}} + \frac{{2{t^3}}}{3} + 15t + {C_1}\).
Vì s(0) = 0 nên C1 = 0.
Vậy s(3) = 69,75 m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi s(t) là quãng đường xe ô tô đi được trong t giây kể từ khi hãm phanh.
Ta có \(s\left( t \right) = \int {\left( { - 10t + 30} \right)dt} = - 5{t^2} + 30t + C\).
Do s(0) = 0 C = 0.
Khi đó s(t) = −5t2 + 30t s(3) = −5.9 + 30.3 = 45 m.
Lời giải
Đáp án đúng là: B
Gọi h(t) là độ cao của quả bóng tại thời điểm t.
Suy ra h'(t) = v(t) do đó h(t) là một nguyên hàm của v(t).
Ta có \(\int {\left( { - 10t + 16} \right)dt} = - 5{t^2} + 16t + C\).
Do quả bóng được ném lên từ độ cao 20 m nên tại thời điểm t = 0 thì h = 20.
Hay h(0) = 20 C = 20. Do đó h(t) = −5t2 + 16t + 20.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.