Câu hỏi:

06/05/2025 63

Cho hàm số f(x) liên tục trên ℝ. Gọi F(x) là một nguyên hàm của f(x) trên ℝ thỏa mãn F(2) – F(0) = 5. Khi đó \(\int\limits_0^2 {3f\left( x \right)dx} \) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(\int\limits_0^2 {3f\left( x \right)dx} \)\( = 3\int\limits_0^2 {f\left( x \right)dx} \)\( = 3\left( {F\left( 2 \right) - F\left( 0 \right)} \right) = 3.5 = 15\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

\(\int\limits_0^1 {f'\left( x \right)dx} = 2024\)\( \Leftrightarrow \left. {f\left( x \right)} \right|_0^1 = 2024\)\( \Leftrightarrow f\left( 1 \right) - f\left( 0 \right) = 2024\)\( \Leftrightarrow f\left( 1 \right) = 2024 + f\left( 0 \right) = 2024 - 2023 = 1\).

Câu 2

Cho hàm số y = f(x) có đạo hàm f'(x) và f'(x) liên tục trên đoạn [a; b]. Gọi F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b]. Chọn mệnh đề đúng.

Lời giải

Đáp án đúng là: A

Ta có \(f\left( b \right) - f\left( a \right) = \int\limits_a^b {f'\left( x \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Gọi F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b]. Chọn mệnh đề sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay