Câu hỏi:

06/05/2025 37

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3 - 2x\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\3{x^2} + 2x - 4\;\;\;\;\;\;khi\;x < 1\end{array} \right.\). Giả sử F(x) là nguyên hàm của f(x) trên ℝ thỏa mãn F(2) = 4. Giá trị của F(−2) – 4F(3) bằng

</>

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(F\left( x \right) = \left\{ \begin{array}{l}3x - {x^2} + {C_1}\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\{x^3} + {x^2} - 4x + {C_2}\;\;\;\;\;\;khi\;x < 1\end{array} \right.\).

Vì F(2) = 4 C1 = 2. Do đó \(F\left( x \right) = \left\{ \begin{array}{l}3x - {x^2} + 2\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\{x^3} + {x^2} - 4x + {C_2}\;\;\;\;khi\;x < 1\end{array} \right.\).

Vì hàm số liên tục trên ℝ nên \(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = F\left( 1 \right)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {1^ + }} \left( {3x - {x^2} + 2} \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} + {x^2} - 4x + {C_2}} \right)\) C2 = 6.

Do đó \(F\left( x \right) = \left\{ \begin{array}{l}3x - {x^2} + 2\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\{x^3} + {x^2} - 4x + 6\;\;\;\;khi\;x < 1\end{array} \right.\).

Vậy F(−2) – 4F(3) = 10 – 4.2 = 2.

</></></>

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + a\;\;khi\;x \ge 1\\3{x^2} + b\;khi\;x < 1\end{array} \right.\) thỏa mãn \(\int\limits_0^2 {f\left( x \right)dx} = 13\). Tính T = a + b – ab.

</>

Xem đáp án » 06/05/2025 40

Câu 2:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{2}{{x + 1}}\;\;khi\;0 \le x \le 1\\2x - 1\;khi\;1 \le x \le 3\end{array} \right.\) . Tính tích phân \(\int\limits_0^3 {f\left( x \right)dx} \).

Xem đáp án » 06/05/2025 36

Câu 3:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\;\;khi\;0 \le x \le 1\\4 - x\;khi\;1 \le x \le 2\end{array} \right.\). Tính tích phân \(\int\limits_0^2 {f\left( x \right)dx} \).

Xem đáp án » 06/05/2025 35

Câu 4:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2{x^2} - x\;\;khi\;x < 0\\\sin x\;\;\;\;\;\;khi\;x \ge 0\end{array} \right.\). Tính tích phân \(\int\limits_{ - 1}^\pi {f\left( x \right)dx} \).

</>

Xem đáp án » 06/05/2025 32

Câu 5:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 2\;\;khi\; - 3 \le x \le - 1\\{x^2}\;\;\;\;\;\;khi\;x \ge - 1\end{array} \right.\). Tính \(\int\limits_{ - 3}^3 {f\left( x \right)dx} \) bằng

Xem đáp án » 06/05/2025 30

Câu 6:

Cho \(f\left( x \right) = \left\{ \begin{array}{l}1\;\;\;\;\;\;\;\;khi\;x \ge 1\\2x - 1\;khi\;x < 1\end{array} \right.\). Tính \(I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \).

</>

Xem đáp án » 06/05/2025 29
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay