Câu hỏi:

06/05/2025 42

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\;\;khi\;x \ge 0\\{e^{2x}}\;\;\;\;khi\;x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \) có giá trị bằng bao nhiêu?

</>

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

\(I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \)\( = \int\limits_{ - 1}^0 {f\left( x \right)dx} + \int\limits_0^2 {f\left( x \right)dx} \)\( = \int\limits_{ - 1}^0 {{e^{2x}}dx} + \int\limits_0^2 {\left( {x + 1} \right)dx} \)

\( = \left. {\frac{{{e^{2x}}}}{2}} \right|_{ - 1}^0 + \left. {\left( {\frac{{{x^2}}}{2} + x} \right)} \right|_0^2\)\( = \frac{9}{2} - \frac{1}{{2{e^2}}} = \frac{{9{e^2} - 1}}{{2{e^2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có \(F\left( x \right) = \left\{ \begin{array}{l}3x - {x^2} + {C_1}\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\{x^3} + {x^2} - 4x + {C_2}\;\;\;\;\;\;khi\;x < 1\end{array} \right.\).

Vì F(2) = 4 C1 = 2. Do đó \(F\left( x \right) = \left\{ \begin{array}{l}3x - {x^2} + 2\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\{x^3} + {x^2} - 4x + {C_2}\;\;\;\;khi\;x < 1\end{array} \right.\).

Vì hàm số liên tục trên ℝ nên \(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = F\left( 1 \right)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {1^ + }} \left( {3x - {x^2} + 2} \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} + {x^2} - 4x + {C_2}} \right)\) C2 = 6.

Do đó \(F\left( x \right) = \left\{ \begin{array}{l}3x - {x^2} + 2\;\;\;\;\;\;\;\;\;\;\;khi\;x \ge 1\\{x^3} + {x^2} - 4x + 6\;\;\;\;khi\;x < 1\end{array} \right.\).

Vậy F(−2) – 4F(3) = 10 – 4.2 = 2.

</></></>

Lời giải

Đáp án đúng là: A

Có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {3{x^2} + b} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + a} \right) = f\left( 1 \right)\)\( \Leftrightarrow 3 + b = 2 + a\)\( \Leftrightarrow a - b = 1\) (1).

\(\int\limits_0^2 {f\left( x \right)dx} = 13\)\( \Leftrightarrow \int\limits_0^1 {\left( {3{x^2} + b} \right)dx + } \int\limits_1^2 {\left( {2x + a} \right)dx} = 13\)

\[ \Leftrightarrow \left. {\left( {{x^3} + bx} \right)} \right|_0^1 + \left. {\left( {{x^2} + ax} \right)} \right|_1^2 = 13\]\[ \Leftrightarrow \left( {1 + b} \right) + 3 + a = 13\]\[ \Leftrightarrow a + b = 9\] (2).

Từ (1) và (2), ta có a = 5; b = 4.

Do đó T = 5 + 4 – 5.4 = −11.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay