Trong một đợt khảo sát về nguy cơ mắc bệnh tim mạch, người ta thấy rằng tại thành phố X, tỷ lệ người dân có lối sống ít vận động là 25%, tỷ lệ người bị bệnh tim trong số người ít vận động là 60% , trong số người có lối sống tích cực là 10%. Hỏi khi gặp một người bị bệnh tim tại thành phố này thì xác suất người đó có lối sống ít vận động là bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
A. 0,23;
B. 0,32;
C. 0,67;
D. 0,36.
Quảng cáo
Trả lời:

Đáp án đúng là: C
Gọi A là biến cố “Người đó có lối sống ít vận động”;
B là biến cố “Người đó bị bệnh tim”.
Theo giả thiết ta có: P(A) = 0,25 \( \Rightarrow P\left( {\overline A } \right) = 0,75\); P(B|A) = 0,6; \(P\left( {B|\overline A } \right) = 0,1\).
Áp dụng công thức xác suất toàn phần
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,25.0,6 + 0,75.0,1 = 0,225\).
Theo công thức Bayes, ta có
\[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,25.0,6}}{{0,225}} = \frac{2}{3} \approx 0,67\].
Như vậy khi gặp một người bị bệnh tim tại thành phố này thì xác suất người đó có lối sống ít vận động là 0,67.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”,
B là biến cố “Tài xế lái xe gây tai nạn”.
Khi đó P(A) = 3% = 0,03; P(A|B) = 21% = 0,21.
Theo công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\)\( \Rightarrow \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,21}}{{0,03}} = 7\).
Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên 7 lần.
Câu 2
A. Khoảng 32%;
B. Khoảng 47%;
C. Khoảng 83%;
D. Khoảng 95%.
Lời giải
Đáp án đúng là: A
Gọi B là biến cố “Người đó mắc bệnh”,
A là biến cố “Người đó được xét nghiệm có kết quả dương tính”.
Theo đề, P(B) = 1% = 0,01 \( \Rightarrow P\left( {\overline B } \right) = 1 - 0,01 = 0,99\);
P(A|B) = 95% = 0,95; \(P\left( {A|\overline B } \right) = 2\% = 0,02\).
Có \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\) = 0,01.0,95 + 0,02.0,99 = 0,0293.
Suy ra \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,95.0,01}}{{0,0293}} \approx 0,3242\).
Vậy xác suất người đó thực sự mắc bệnh là khoảng 32%.
Câu 3
A. 0,0056;
B. 0,1875;
C. 0,1785;
D. 0,1587.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\frac{{15}}{{28}}\);
B. \(\frac{{17}}{{28}}\);
C. \(\frac{{25}}{{37}}\);
D. \(\frac{{27}}{{34}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. 0,8;
B. 0,25;
C. 0,86;
D. 0,68.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 1;
B. 2;
C. 100;
D. −100.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 0,6;
B. 0,5;
C. 0,4;
D. 0,3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.