Câu hỏi:

10/05/2025 7

Chứng minh rằng nếu x, y là hai số nguyên dương thoả mãn x² + 4xy - 8y²- 4y + 1= 0 thì 2y - x là số chính phương

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

x² + 4xy - 8y²- 4y + 1= 0

x2 + 4xy – 12y2 + 4y2 – 4y + 1 = 0

(x – 2y)(x + 6y) + (2y – 1)2 = 0

(2y – x)(x + 6y) = (2y – 1)2

Đặt d = ƯCLN(2y – x; x + 6y)

Suy ra: \[\left\{ \begin{array}{l}2y - x \vdots d\\x + 6y \vdots d\end{array} \right. \Rightarrow \left( {2y - x} \right) + \left( {x + 6y} \right) \vdots d \Rightarrow 8y \vdots d\left( 1 \right)\]

Mà (2y – 1)2 = (2y – x)(x + 6y) d2

Suy ra: 2y – 1\[ \vdots d\] (2)

Từ (1) và (2) suy ra: d = 1

Tức là 2y – x và x + 6y nguyên tố cùng nhau mà tích của 2 số là số chính phương

Nên 2y - x và x + 6y là số chính phương

Vậy 2y - x là số chính phương

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải hệ phương trình: \(\left\{ \begin{array}{l}xy\left( {3x + y} \right) = 4\\7{x^3} + 11 = 3\left( {x + y} \right)\left( {x + y + 1} \right)\end{array} \right.\)

Xem đáp án » 10/05/2025 15

Câu 2:

Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3}\left( {{y^2} + 3y + 3} \right) = 3{y^2}\\{y^3}\left( {{z^2} + 3z + 3} \right) = 3{z^2}\\{z^3}\left( {{x^2} + 3x + 3} \right) = 3{x^2}\end{array} \right.\)

Xem đáp án » 10/05/2025 14

Câu 3:

Khai triển hằng đẳng thức x2 – y2

Xem đáp án » 10/05/2025 13

Câu 4:

Giải hệ phương trình \(\left\{ \begin{array}{l}{x^2} + {y^2} + 4x + 2y = 0\\{x^2} + 7{y^2} - 4xy + 6y = 13\end{array} \right.\)

Xem đáp án » 10/05/2025 13

Câu 5:

Giải phương trình vô tỉ: \({x^2} - x - 1000\sqrt {1 + 8000x} = 1000\)

Xem đáp án » 10/05/2025 13

Câu 6:

Giải hệ phương trình: \(\left\{ \begin{array}{l}x + y + \frac{1}{x} + \frac{1}{y} = \frac{9}{2}\\\frac{1}{4} + \frac{3}{2}\left( {x + \frac{1}{y}} \right) = xy + \frac{1}{{xy}}\end{array} \right.\)

Xem đáp án » 10/05/2025 12

Câu 7:

Trên tập hợp Z các số nguyên. Chứng minh rằng x2 + y2 chia hết cho 5 khi và chỉ khi x và y đồng thời chia hết cho 5

Xem đáp án » 10/05/2025 12
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua