Câu hỏi:

19/08/2025 72 Lưu

Biết x, y, z là những số nguyên thỏa mãn x3 + y3 + z3 chia hết cho 27. Chứng minh rằng hoặc cả ba số x, y, z cùng chia hết cho 3, hoặc 2 trong ba số có tổng chia hết cho 9.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Ta có: (x + y + z)3 = x3 + y3 + z3 +3(x + y)(y + z)(z + x) (*)

Lại có: 

x3 + y3 + z3 3

3(x +y )(y + z)(z + x) 3

nên (x + y + z)3 3

x +y + z 3

(x + y + z)3 27

Kết hợp với (*) và x3 + y3 + z3 27

3(x + y)(y + z)(z + x) 27

(x + y)(y + z)(z + x) 9 (1)

+) Nếu cả 3 số x; y; z cùng chia hết cho 3 ta có đpcm

+) Nếu 3 số x; y; z không cùng chia hết cho 3

Thấy rẳng nếu x; y; z cùng dư 1 hoặc 2 thì mâu thuẫn với (1)

Do đó, để (1) đúng thì trong 3 số x; y; z chỉ có 2 số chia hết cho 3 hoặc có 1 số chia 3 dư 1; 1 số chia 3 dư 2

- Nếu trong 3 số x; y; z chỉ có 2 số chia hết cho 3; giả sử x; y chia hết cho 3

Khi đó; x + y 3; y + z ̸ 3; z + x ̸̸ 3

Để (1) đúng thì x + y 9(đpcm)

- Nếu trong 3 số x;y;z có 1 số chia 3 dư 1; 1 số chia 3 dư 2; giả sử 2 số đó là y; z

Khi đó, x + y ̸ 3; y + z 3; z + x ̸ 3

Để (1) đúng thì y + z 9 (đpcm)

Vậy ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

\(\left\{ \begin{array}{l}{x^2} + {y^2} + 2\left( {xy + 3x - y} \right) = 0\\{x^2} + {y^2} + 4x - 2y = 0\left( 2 \right)\end{array} \right.\)

 Trừ phương trình thứ nhất cho phương trình thứ hai, ta được:

2(xy + 3x – y) – 4x + 2y = 0

2xy + 2x = 0

2x(y + 1) = 0

Suy ra: x = 0 hoặc y = -1

+ Với x = 0, thay vào (2) ta có: y2 – 2y = 0 \(\left[ \begin{array}{l}y = 0\\y = 2\end{array} \right.\)

+ Với y = -1, thay vào (2) ta có: x2 + 4x + 3 = 0 \(\left[ \begin{array}{l}x = - 1\\x = - 3\end{array} \right.\)

Lời giải

Lời giải:

ĐKXĐ: \(x \ge \frac{1}{2}\)

\({x^2} - 6x + 2 = 2\left( {2 - x} \right)\sqrt {2x - 1} \)

\({x^2} + 2x\sqrt {2x - 1} + 2x - 1 = 4\left( {2x - 1} \right) + 4\sqrt {2x - 1} + 1\)

\({\left( {x + \sqrt {2x - 1} } \right)^2} = {\left( {2\sqrt {2x - 1} + 1} \right)^2}\) (*)

Do \(x \ge \frac{1}{2}\) nên \(\left\{ \begin{array}{l}x + \sqrt {2x - 1} > 0\\2\sqrt {2x - 1} + 1 > 0\end{array} \right.\)

Nên (*) tương đương: \(x + \sqrt {2x - 1} = 2\sqrt {2x - 1} + 1\)

\(x - 1 = \sqrt {2x - 1} \)

\(\left\{ \begin{array}{l}x > 1\\{\left( {x - 1} \right)^2} = 2x - 1\end{array} \right.\)

\(\left\{ \begin{array}{l}x > 1\\x = 2 + \sqrt 2 \end{array} \right.\)

Vậy \(x = 2 + \sqrt 2 \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP